An error occured. Details Hide
You have unsaved pages. Restore Cancel

Eurostat

Eurostat is the statistical office of the European Union situated in Luxembourg. Its task is to provide the European Union with statistics at European level that enable comparisons between countries and regions and to promote the harmonisation of statistical methods across EU member states and candidates for accession as well as EFTA countries.

All datasets:  A B C D E F G H I J K L M N O P Q R S T U W Y
  • A
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 23 March, 2019
      Select Dataset
      The domain "Income and living conditions" covers four topics: people at risk of poverty or social exclusion, income distribution and monetary poverty, living conditions and material deprivation, which are again structured into collections of indicators on specific topics. The collection "People at risk of poverty or social exclusion" houses main indicator on risk of poverty or social inclusion included in the Europe 2020 strategy as well as the intersections between sub-populations of all Europe 2020 indicators on poverty and social exclusion. The collection "Income distribution and monetary poverty" houses collections of indicators relating to poverty risk, poverty risk of working individuals as well as the distribution of income. The collection "Living conditions" hosts indicators relating to characteristics and living conditions of households, characteristics of the population according to different breakdowns, health and labour conditions, housing conditions as well as childcare related indicators. The collection "Material deprivation" covers indicators relating to economic strain, durables, housing deprivation and environment of the dwelling.
    • March 2009
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 29 June, 2014
      Select Dataset
      Eurostat Dataset Id:hsw_ij_svinj An ad hoc module on "Work-related health problems and accidental injuries" was included in the 1999 Labour Force Survey (LFS), in order to act as a complementary data source to ESAW (European Statistics on accidents at Work) and EODS (European Occupational Diseases Statistics) and give a broader view on Health and Safety at Work.. This module provided complementary information on accidents occurring at work and resulting in less than 4 days' absence from work, on return to work after the accident at work and on health problems caused or made worse by work. The data refer to self-reported accidental injuries at work during a 12 month period before the survey and to self-reported non-accidental health problems caused or made worse by work and from which the respondent had suffered during a 12 month period before the survey. The indicators used for accidental injuries are the percentage distributions of accidents and the relative incidence rate of accidents (relative to the rate in the total of all participating countries, which is marked with 100). The incidence rate is the number of accidents at work per 100 000 employed workers. The indicators used for non-accidental health problems are the percentage distribution, number, prevalence rate and relative prevalence rate of health problems (relative to the rate in the total of all participating countries, which is marked with 100). The prevalence rate is the number of people suffering from the health problem during the last 12 months per 100 000 employed workers (see the link to summary methodology at the bottom of the page). Statistical adjustments: Because the frequency of work accidents is higher in some branches (high-risk sectors), an adjustment is performed to get more standardised incidence rates. Similarly, the prevalence rates for non-accidental health problems are standardised for economic activity and for age, as age influences importantly the prevalence of health problems. For more details, please see the link to the summary methodology at the bottom of the page. Geographical coverage: Denmark, Germany, Greece, Spain, Hungary, Ireland, Italy, Luxembourg, Portugal, Finland, Sweden, United Kingdom. Sector coverage: All sectors of economic activity are covered. The specification of sectors is given according to the NACE classification (NACE = Nomenclature statistique des activités économiques dans la Communauté européenne). The incidence and prevalence rates are calculated for the total of all branches.
    • March 2009
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 29 June, 2014
      Select Dataset
      Eurostat Dataset Id:hsw_ij_inwsa An ad hoc module on "Work-related health problems and accidental injuries" was included in the 1999 Labour Force Survey (LFS), in order to act as a complementary data source to ESAW (European Statistics on accidents at Work) and EODS (European Occupational Diseases Statistics) and give a broader view on Health and Safety at Work.. This module provided complementary information on accidents occurring at work and resulting in less than 4 days' absence from work, on return to work after the accident at work and on health problems caused or made worse by work. The data refer to self-reported accidental injuries at work during a 12 month period before the survey and to self-reported non-accidental health problems caused or made worse by work and from which the respondent had suffered during a 12 month period before the survey. The indicators used for accidental injuries are the percentage distributions of accidents and the relative incidence rate of accidents (relative to the rate in the total of all participating countries, which is marked with 100). The incidence rate is the number of accidents at work per 100 000 employed workers. The indicators used for non-accidental health problems are the percentage distribution, number, prevalence rate and relative prevalence rate of health problems (relative to the rate in the total of all participating countries, which is marked with 100). The prevalence rate is the number of people suffering from the health problem during the last 12 months per 100 000 employed workers (see the link to summary methodology at the bottom of the page). Statistical adjustments: Because the frequency of work accidents is higher in some branches (high-risk sectors), an adjustment is performed to get more standardised incidence rates. Similarly, the prevalence rates for non-accidental health problems are standardised for economic activity and for age, as age influences importantly the prevalence of health problems. For more details, please see the link to the summary methodology at the bottom of the page. Geographical coverage: Denmark, Germany, Greece, Spain, Hungary, Ireland, Italy, Luxembourg, Portugal, Finland, Sweden, United Kingdom. Sector coverage: All sectors of economic activity are covered. The specification of sectors is given according to the NACE classification (NACE = Nomenclature statistique des activités économiques dans la Communauté européenne). The incidence and prevalence rates are calculated for the total of all branches.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 09 February, 2019
      Select Dataset
      Harmonised data on accidents at work are collected in the framework of the administrative data collection 'European Statistics on Accidents at Work (ESAW)', on the basis of a methodology developed first in 1990. An accident at work is defined as 'a discrete occurrence in the course of work which leads to physical or mental harm'. The data include only fatal and non-fatal accidents involving more than 3 calendar days of absence from work. If the accident does not lead to the death of the victim it is called a 'non-fatal' (or 'serious') accident. A fatal accident at work is defined as an accident which leads to the death of a victim within one year of the accident. The variables collected  on accidents at work include: Economic activity of the employer and size of the enterpriseEmployment status, occupation, age, sex and nationality of victimGeographical location, date and time of the accidentType of injury, body part injured and the severity of the accident (number of full calendar days during which the victim is unfit for work excluding the day of the accident, permanent incapacity or death within one year of the accident).Variables on causes and circumstances of the accident: workstation, working environment, working process, specific physical activity, material agent of the specific physical activity, deviation and material agent of deviation, contact - mode of injury and material agent of contact - mode of injury. The national ESAW sources are the declarations of accidents at work, either to the accident insurance of the national social security system, a private insurance for accidents at work or to other relevant national authorities (labour inspection etc.). As an exception, accident data for the Netherlands are based on survey data. On the Eurostat website, ESAW data are disseminated in two sections: 'Main Indicators' and 'Details by economic sector (NACE Rev2, 2008 onwards)'. Depending on the table, data are broken down by: economic activity (NACE 'main sectors' (1 digit code) or more detailed NACE divisions (2 digit codes)); the occupation of the victim (ISCO-08 code); country; severity of the accident, sex, age, employment status, size  of the enterprise, body part injured and type of injury. The data is presented in form of numbers, percentages, incidence rates and standardised incidence rates of non-fatal and fatal accidents at work, either for EU aggregates, countries or certain breakdowns by dimensions such as age, sex etc. Numbers correspond to a simple count of all non-fatal and fatal accidents for the entirety or certain breakdowns of the data;Percentages represent shares of breakdowns;The incidence rate of non-fatal or fatal accidents at work is the number of serious or fatal accidents per 100,000 persons in employment;The standardised incidence rates of non-fatal or fatal accidents at work aim to eliminate differences in the structures of countries' economies (see section 20.6 Adjustment for more details). The incidence rate indicates the relative importance of non-fatal or fatal accidents at work in the working population. For both types of accidents at work the numerator is the number of accidents that occurred during the year. The denominator is the reference population (i.e. the number of persons in employment) expressed in 100,000 persons. The reference population (or number of persons in employment) related to the national ESAW reporting system is provided by the Member States, either from administrative sources related to accidents at work or from the EU Labour Force Survey (LFS).
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 09 February, 2019
      Select Dataset
      Harmonised data on accidents at work are collected in the framework of the administrative data collection 'European Statistics on Accidents at Work (ESAW)', on the basis of a methodology developed first in 1990. An accident at work is defined as 'a discrete occurrence in the course of work which leads to physical or mental harm'. The data include only fatal and non-fatal accidents involving more than 3 calendar days of absence from work. If the accident does not lead to the death of the victim it is called a 'non-fatal' (or 'serious') accident. A fatal accident at work is defined as an accident which leads to the death of a victim within one year of the accident. The variables collected  on accidents at work include: Economic activity of the employer and size of the enterpriseEmployment status, occupation, age, sex and nationality of victimGeographical location, date and time of the accidentType of injury, body part injured and the severity of the accident (number of full calendar days during which the victim is unfit for work excluding the day of the accident, permanent incapacity or death within one year of the accident).Variables on causes and circumstances of the accident: workstation, working environment, working process, specific physical activity, material agent of the specific physical activity, deviation and material agent of deviation, contact - mode of injury and material agent of contact - mode of injury. The national ESAW sources are the declarations of accidents at work, either to the accident insurance of the national social security system, a private insurance for accidents at work or to other relevant national authorities (labour inspection etc.). As an exception, accident data for the Netherlands are based on survey data. On the Eurostat website, ESAW data are disseminated in two sections: 'Main Indicators' and 'Details by economic sector (NACE Rev2, 2008 onwards)'. Depending on the table, data are broken down by: economic activity (NACE 'main sectors' (1 digit code) or more detailed NACE divisions (2 digit codes)); the occupation of the victim (ISCO-08 code); country; severity of the accident, sex, age, employment status, size  of the enterprise, body part injured and type of injury. The data is presented in form of numbers, percentages, incidence rates and standardised incidence rates of non-fatal and fatal accidents at work, either for EU aggregates, countries or certain breakdowns by dimensions such as age, sex etc. Numbers correspond to a simple count of all non-fatal and fatal accidents for the entirety or certain breakdowns of the data;Percentages represent shares of breakdowns;The incidence rate of non-fatal or fatal accidents at work is the number of serious or fatal accidents per 100,000 persons in employment;The standardised incidence rates of non-fatal or fatal accidents at work aim to eliminate differences in the structures of countries' economies (see section 20.6 Adjustment for more details). The incidence rate indicates the relative importance of non-fatal or fatal accidents at work in the working population. For both types of accidents at work the numerator is the number of accidents that occurred during the year. The denominator is the reference population (i.e. the number of persons in employment) expressed in 100,000 persons. The reference population (or number of persons in employment) related to the national ESAW reporting system is provided by the Member States, either from administrative sources related to accidents at work or from the EU Labour Force Survey (LFS).
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 09 February, 2019
      Select Dataset
      Harmonised data on accidents at work are collected in the framework of the administrative data collection 'European Statistics on Accidents at Work (ESAW)', on the basis of a methodology developed first in 1990. An accident at work is defined as 'a discrete occurrence in the course of work which leads to physical or mental harm'. The data include only fatal and non-fatal accidents involving more than 3 calendar days of absence from work. If the accident does not lead to the death of the victim it is called a 'non-fatal' (or 'serious') accident. A fatal accident at work is defined as an accident which leads to the death of a victim within one year of the accident. The variables collected  on accidents at work include: Economic activity of the employer and size of the enterpriseEmployment status, occupation, age, sex and nationality of victimGeographical location, date and time of the accidentType of injury, body part injured and the severity of the accident (number of full calendar days during which the victim is unfit for work excluding the day of the accident, permanent incapacity or death within one year of the accident).Variables on causes and circumstances of the accident: workstation, working environment, working process, specific physical activity, material agent of the specific physical activity, deviation and material agent of deviation, contact - mode of injury and material agent of contact - mode of injury. The national ESAW sources are the declarations of accidents at work, either to the accident insurance of the national social security system, a private insurance for accidents at work or to other relevant national authorities (labour inspection etc.). As an exception, accident data for the Netherlands are based on survey data. On the Eurostat website, ESAW data are disseminated in two sections: 'Main Indicators' and 'Details by economic sector (NACE Rev2, 2008 onwards)'. Depending on the table, data are broken down by: economic activity (NACE 'main sectors' (1 digit code) or more detailed NACE divisions (2 digit codes)); the occupation of the victim (ISCO-08 code); country; severity of the accident, sex, age, employment status, size  of the enterprise, body part injured and type of injury. The data is presented in form of numbers, percentages, incidence rates and standardised incidence rates of non-fatal and fatal accidents at work, either for EU aggregates, countries or certain breakdowns by dimensions such as age, sex etc. Numbers correspond to a simple count of all non-fatal and fatal accidents for the entirety or certain breakdowns of the data;Percentages represent shares of breakdowns;The incidence rate of non-fatal or fatal accidents at work is the number of serious or fatal accidents per 100,000 persons in employment;The standardised incidence rates of non-fatal or fatal accidents at work aim to eliminate differences in the structures of countries' economies (see section 20.6 Adjustment for more details). The incidence rate indicates the relative importance of non-fatal or fatal accidents at work in the working population. For both types of accidents at work the numerator is the number of accidents that occurred during the year. The denominator is the reference population (i.e. the number of persons in employment) expressed in 100,000 persons. The reference population (or number of persons in employment) related to the national ESAW reporting system is provided by the Member States, either from administrative sources related to accidents at work or from the EU Labour Force Survey (LFS).
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 09 February, 2019
      Select Dataset
      Harmonised data on accidents at work are collected in the framework of the administrative data collection 'European Statistics on Accidents at Work (ESAW)', on the basis of a methodology developed first in 1990. An accident at work is defined as 'a discrete occurrence in the course of work which leads to physical or mental harm'. The data include only fatal and non-fatal accidents involving more than 3 calendar days of absence from work. If the accident does not lead to the death of the victim it is called a 'non-fatal' (or 'serious') accident. A fatal accident at work is defined as an accident which leads to the death of a victim within one year of the accident. The variables collected  on accidents at work include: Economic activity of the employer and size of the enterpriseEmployment status, occupation, age, sex and nationality of victimGeographical location, date and time of the accidentType of injury, body part injured and the severity of the accident (number of full calendar days during which the victim is unfit for work excluding the day of the accident, permanent incapacity or death within one year of the accident).Variables on causes and circumstances of the accident: workstation, working environment, working process, specific physical activity, material agent of the specific physical activity, deviation and material agent of deviation, contact - mode of injury and material agent of contact - mode of injury. The national ESAW sources are the declarations of accidents at work, either to the accident insurance of the national social security system, a private insurance for accidents at work or to other relevant national authorities (labour inspection etc.). As an exception, accident data for the Netherlands are based on survey data. On the Eurostat website, ESAW data are disseminated in two sections: 'Main Indicators' and 'Details by economic sector (NACE Rev2, 2008 onwards)'. Depending on the table, data are broken down by: economic activity (NACE 'main sectors' (1 digit code) or more detailed NACE divisions (2 digit codes)); the occupation of the victim (ISCO-08 code); country; severity of the accident, sex, age, employment status, size  of the enterprise, body part injured and type of injury. The data is presented in form of numbers, percentages, incidence rates and standardised incidence rates of non-fatal and fatal accidents at work, either for EU aggregates, countries or certain breakdowns by dimensions such as age, sex etc. Numbers correspond to a simple count of all non-fatal and fatal accidents for the entirety or certain breakdowns of the data;Percentages represent shares of breakdowns;The incidence rate of non-fatal or fatal accidents at work is the number of serious or fatal accidents per 100,000 persons in employment;The standardised incidence rates of non-fatal or fatal accidents at work aim to eliminate differences in the structures of countries' economies (see section 20.6 Adjustment for more details). The incidence rate indicates the relative importance of non-fatal or fatal accidents at work in the working population. For both types of accidents at work the numerator is the number of accidents that occurred during the year. The denominator is the reference population (i.e. the number of persons in employment) expressed in 100,000 persons. The reference population (or number of persons in employment) related to the national ESAW reporting system is provided by the Member States, either from administrative sources related to accidents at work or from the EU Labour Force Survey (LFS).
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 09 February, 2019
      Select Dataset
      Harmonised data on accidents at work are collected in the framework of the administrative data collection 'European Statistics on Accidents at Work (ESAW)', on the basis of a methodology developed first in 1990. An accident at work is defined as 'a discrete occurrence in the course of work which leads to physical or mental harm'. The data include only fatal and non-fatal accidents involving more than 3 calendar days of absence from work. If the accident does not lead to the death of the victim it is called a 'non-fatal' (or 'serious') accident. A fatal accident at work is defined as an accident which leads to the death of a victim within one year of the accident. The variables collected  on accidents at work include: Economic activity of the employer and size of the enterpriseEmployment status, occupation, age, sex and nationality of victimGeographical location, date and time of the accidentType of injury, body part injured and the severity of the accident (number of full calendar days during which the victim is unfit for work excluding the day of the accident, permanent incapacity or death within one year of the accident).Variables on causes and circumstances of the accident: workstation, working environment, working process, specific physical activity, material agent of the specific physical activity, deviation and material agent of deviation, contact - mode of injury and material agent of contact - mode of injury. The national ESAW sources are the declarations of accidents at work, either to the accident insurance of the national social security system, a private insurance for accidents at work or to other relevant national authorities (labour inspection etc.). As an exception, accident data for the Netherlands are based on survey data. On the Eurostat website, ESAW data are disseminated in two sections: 'Main Indicators' and 'Details by economic sector (NACE Rev2, 2008 onwards)'. Depending on the table, data are broken down by: economic activity (NACE 'main sectors' (1 digit code) or more detailed NACE divisions (2 digit codes)); the occupation of the victim (ISCO-08 code); country; severity of the accident, sex, age, employment status, size  of the enterprise, body part injured and type of injury. The data is presented in form of numbers, percentages, incidence rates and standardised incidence rates of non-fatal and fatal accidents at work, either for EU aggregates, countries or certain breakdowns by dimensions such as age, sex etc. Numbers correspond to a simple count of all non-fatal and fatal accidents for the entirety or certain breakdowns of the data;Percentages represent shares of breakdowns;The incidence rate of non-fatal or fatal accidents at work is the number of serious or fatal accidents per 100,000 persons in employment;The standardised incidence rates of non-fatal or fatal accidents at work aim to eliminate differences in the structures of countries' economies (see section 20.6 Adjustment for more details). The incidence rate indicates the relative importance of non-fatal or fatal accidents at work in the working population. For both types of accidents at work the numerator is the number of accidents that occurred during the year. The denominator is the reference population (i.e. the number of persons in employment) expressed in 100,000 persons. The reference population (or number of persons in employment) related to the national ESAW reporting system is provided by the Member States, either from administrative sources related to accidents at work or from the EU Labour Force Survey (LFS).
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 19 February, 2019
      Select Dataset
      Harmonised data on accidents at work are collected in the framework of the administrative data collection 'European Statistics on Accidents at Work (ESAW)', on the basis of a methodology developed first in 1990. An accident at work is defined as 'a discrete occurrence in the course of work which leads to physical or mental harm'. The data include only fatal and non-fatal accidents involving more than 3 calendar days of absence from work. If the accident does not lead to the death of the victim it is called a 'non-fatal' (or 'serious') accident. A fatal accident at work is defined as an accident which leads to the death of a victim within one year of the accident. The variables collected  on accidents at work include: Economic activity of the employer and size of the enterpriseEmployment status, occupation, age, sex and nationality of victimGeographical location, date and time of the accidentType of injury, body part injured and the severity of the accident (number of full calendar days during which the victim is unfit for work excluding the day of the accident, permanent incapacity or death within one year of the accident).Variables on causes and circumstances of the accident: workstation, working environment, working process, specific physical activity, material agent of the specific physical activity, deviation and material agent of deviation, contact - mode of injury and material agent of contact - mode of injury. The national ESAW sources are the declarations of accidents at work, either to the accident insurance of the national social security system, a private insurance for accidents at work or to other relevant national authorities (labour inspection etc.). As an exception, accident data for the Netherlands are based on survey data. On the Eurostat website, ESAW data are disseminated in two sections: 'Main Indicators' and 'Details by economic sector (NACE Rev2, 2008 onwards)'. Depending on the table, data are broken down by: economic activity (NACE 'main sectors' (1 digit code) or more detailed NACE divisions (2 digit codes)); the occupation of the victim (ISCO-08 code); country; severity of the accident, sex, age, employment status, size  of the enterprise, body part injured and type of injury. The data is presented in form of numbers, percentages, incidence rates and standardised incidence rates of non-fatal and fatal accidents at work, either for EU aggregates, countries or certain breakdowns by dimensions such as age, sex etc. Numbers correspond to a simple count of all non-fatal and fatal accidents for the entirety or certain breakdowns of the data;Percentages represent shares of breakdowns;The incidence rate of non-fatal or fatal accidents at work is the number of serious or fatal accidents per 100,000 persons in employment;The standardised incidence rates of non-fatal or fatal accidents at work aim to eliminate differences in the structures of countries' economies (see section 20.6 Adjustment for more details). The incidence rate indicates the relative importance of non-fatal or fatal accidents at work in the working population. For both types of accidents at work the numerator is the number of accidents that occurred during the year. The denominator is the reference population (i.e. the number of persons in employment) expressed in 100,000 persons. The reference population (or number of persons in employment) related to the national ESAW reporting system is provided by the Member States, either from administrative sources related to accidents at work or from the EU Labour Force Survey (LFS).
    • August 2018
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 August, 2018
      Select Dataset
      The labour market policy (LMP) database was developed and maintained by Eurostat till 2013. From 2014, the LMP database is developed and maintained by European Commission's Directorate General for Employment, Social Affairs and Inclusion and LMP data are disseminated by Eurostat. European Commission's LMP database provides information on labour market interventions, which are government actions to help and support the unemployed and other disadvantaged groups in the transition from unemployment or inactivity to work. The scope of the LMP database is limited to interventions that are explicitly targeted at groups of persons with difficulties in the labour market: the unemployed, persons employed but at risk of involuntary job loss and persons currently considered as inactive persons but who would like to enter the labour market. LMP statistics are one of the data sources for monitoring the Employment Guidelines (part II of the Europe 2020 Integrated Guidelines) through the Europe 2020 Joint Assessment Framework (JAF). The guidelines specifically refer to the provision of active labour market policies, which cover LMP measures and LMP services, and adequate social security systems, which include LMP supports. The unit of observation in the LMP database is the labour market intervention and data on the expenditure and participants for each intervention are collected annually from administrative sources in each country. The database also collects extensive qualitative information that describes each intervention, how it works, the main target groups, etc. LMP interventions are classified by type of action into three broad types – services, measures and supports – and into 9 detailed categories (see 3.2 Classification system). The LMP database covers all EU Member States and Norway. Data for the EU-15 countries and Norway are available from 1998 whilst the more recently acceded EU countries started providing data at different times from 2003 onwards. The following data and metadata are available:Summary tables of expenditure and participants by type of actionFor each country: detailed tables of expenditure and participants by interventionLMP based indicators for monitoring the Employment Guidelines (for definitions see annexes below)Reference data on persons registered with Public Employment Services (PES)Qualitative reports describing the interventions in each country
    • August 2018
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 August, 2018
      Select Dataset
      Eurostat Dataset Id:lmp_ind_actsup The labour market policy (LMP) database was developed and maintained by Eurostat till 2013. From 2014, the LMP database is developed and maintained by European Commission's Directorate General for Employment, Social Affairs and Inclusion and LMP data are disseminated by Eurostat. European Commission's LMP database provides information on labour market interventions, which are government actions to help and support the unemployed and other disadvantaged groups in the transition from unemployment or inactivity to work. The scope of the LMP database is limited to interventions that are explicitly targeted at groups of persons with difficulties in the labour market: the unemployed, persons employed but at risk of involuntary job loss and persons currently considered as inactive persons but who would like to enter the labour market. LMP statistics are one of the data sources for monitoring the Employment Guidelines (part II of the Europe 2020 Integrated Guidelines) through the Europe 2020 Joint Assessment Framework (JAF). The guidelines specifically refer to the provision of active labour market policies, which cover LMP measures and LMP services, and adequate social security systems, which include LMP supports. The unit of observation in the LMP database is the labour market intervention and data on the expenditure and participants for each intervention are collected annually from administrative sources in each country. The database also collects extensive qualitative information that describes each intervention, how it works, the main target groups, etc. LMP interventions are classified by type of action into three broad types – services, measures and supports – and into 9 detailed categories (see 3.2 Classification system). The LMP database covers all EU Member States and Norway. Data for the EU-15 countries and Norway are available from 1998 whilst the more recently acceded EU countries started providing data at different times from 2003 onwards. The following data and metadata are available:Summary tables of expenditure and participants by type of actionFor each country: detailed tables of expenditure and participants by interventionLMP based indicators for monitoring the Employment Guidelines (for definitions see annexes below)Reference data on persons registered with Public Employment Services (PES)Qualitative reports describing the interventions in each country
    • April 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 12 April, 2019
      Select Dataset
      The section 'LFS series - detailed quarterly survey results' reports detailed quarterly results going beyond the EU-LFS main aggregates, which have a separate data domain and some methodological differences. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 12 April, 2019
      Select Dataset
      The section 'LFS series - detailed annual survey results' reports annual results from the EU-LFS. While LFS is a quarterly survey, it is also possible to produce annual results. There are several ways of doing it, see section '18.5 Data compilation' below for details. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metadata. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • April 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 09 April, 2019
      Select Dataset
      The section 'LFS series - detailed quarterly survey results' reports detailed quarterly results going beyond the EU-LFS main aggregates, which have a separate data domain and some methodological differences. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 20 March, 2019
      Select Dataset
      The section 'LFS series - detailed annual survey results' reports annual results from the EU-LFS. While LFS is a quarterly survey, it is also possible to produce annual results. There are several ways of doing it, see section '20.5 Data compilation' below for details. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 11 February, 2019
      Select Dataset
      The Unemployment - LFS adjusted series (including also Harmonised long-term unemployment) is a collection of monthly, quarterly and annual series based on the quarterly results of the EU Labour Force Survey (EU-LFS), which are, where necessary, adjusted and enriched in various ways, in accordance with the specificities of an indicator. The EU-LFS covers the resident population in private households. The MIP scoreboard indicators from the domain are:Unemployment rate, 3 years average. Long-term unemployment rate, % of active population aged 15-74 - 3 years change in p.p.Youth unemployment rate, % of active population aged 15-24 - 3 years change in p.p. For the MIP purposes are published the source data used for the indicator's calculation: annual and quarterly data on unemployment rate and annual figures on youth and long-term unemployment rate.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 11 February, 2019
      Select Dataset
      The indicator Activity rate is based on the quarterly EU Labour Force Survey (EU-LFS) results. The survey covers the resident population in private households. The MIP scoreboard indicator is Activity rate - % of total population aged 15-64 (3 years change in p.p.). 
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 11 February, 2019
      Select Dataset
      The indicator is defined as the percentage of the population in a given age group who are economically active. According to the definitions of the International Labour Organisation (ILO) people are classified as employed, unemployed and economically inactive for the purposes of labour market statistics. The economically active population (also called labour force) is the sum of employed and unemployed persons. Inactive persons are those who, during the reference week, were neither employed nor unemployed. The indicator is based on the EU Labour Force Survey.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 11 February, 2019
      Select Dataset
      The indicator is defined as the percentage of the population aged 15-64 who are economically active. According to the definitions of the International Labour Organisation (ILO) people are classified as employed, unemployed and economically inactive for the purposes of labour market statistics. The economically active population (also called labour force) is the sum of employed and unemployed persons. Inactive persons are those who, during the reference week, were neither employed nor unemployed. The indicator is based on the EU Labour Force Survey.
    • July 2014
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 24 November, 2015
      Select Dataset
      In 2011, the European Union Labour Force Survey (EU-LFS) included an ad hoc module (AHM) on employment of disabled people. The module consisted of 11 variables dealing with:Health problems and difficulties in basic activities;Limitations in work caused by health problems/difficulties in basic activities;Special assistance needed or used by people with health problems/difficulties in basic activities;Limitation in work because of other reasons. On the basis of how the module was operationalised, the following two main definitions for disability were considered for presenting the results:Disabled persons = People having a basic activity difficulty (such as seeing, hearing, walking, communicating);Disabled persons = People having a work limitation caused by a longstanding health condition and/or a basic activity difficulty. 32 countries have implemented this module: the EU 28 Member States plus Turkey, Iceland, Norway and Switzerland. The Norwegian data are not disseminated because the AHM questionnaire in Norway only partly complies with the Commission Regulation (EU) No 317/2010 and consequently, the data are incomplete and partly comparable. Missing values, don't know and refusal answers are not considered in the calculations. It means the indicators have been worked out on the respondents and validated answers only.
    • April 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 12 April, 2019
      Select Dataset
      The section 'LFS series - detailed quarterly survey results' reports detailed quarterly results going beyond the EU-LFS main aggregates, which have a separate data domain and some methodological differences. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 12 April, 2019
      Select Dataset
      The section 'LFS series - detailed annual survey results' reports annual results from the EU-LFS. While LFS is a quarterly survey, it is also possible to produce annual results. There are several ways of doing it, see section '18.5 Data compilation' below for details. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metadata. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 13 April, 2019
      Select Dataset
      The section 'LFS series - detailed annual survey results' reports annual results from the EU-LFS. While LFS is a quarterly survey, it is also possible to produce annual results. There are several ways of doing it, see section '18.5 Data compilation' below for details. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metadata. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 20 March, 2019
      Select Dataset
      The section 'LFS series - detailed annual survey results' reports annual results from the EU-LFS. While LFS is a quarterly survey, it is also possible to produce annual results. There are several ways of doing it, see section '20.5 Data compilation' below for details. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • April 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 09 April, 2019
      Select Dataset
      The section 'LFS series - detailed quarterly survey results' reports detailed quarterly results going beyond the EU-LFS main aggregates, which have a separate data domain and some methodological differences. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 21 February, 2019
      Select Dataset
      The section 'LFS series - detailed annual survey results' reports annual results from the EU-LFS. While LFS is a quarterly survey, it is also possible to produce annual results. There are several ways of doing it, see section '18.5 Data compilation' below for details. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metadata. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 21 February, 2019
      Select Dataset
      The section 'LFS series - detailed annual survey results' reports annual results from the EU-LFS. While LFS is a quarterly survey, it is also possible to produce annual results. There are several ways of doing it, see section '18.5 Data compilation' below for details. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metadata. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 21 March, 2019
      Select Dataset
      The source for the regional labour market information down to NUTS level 2 is the EU Labour Force Survey (EU-LFS). This is a quarterly household sample survey conducted in all Member States of the EU and in EFTA and Candidate countries.  The EU-LFS survey follows the definitions and recommendations of the International Labour Organisation (ILO). To achieve further harmonisation, the Member States also adhere to common principles when formulating questionnaires. The LFS' target population is made up of all persons in private households aged 15 and over. For more information see the EU Labour Force Survey (lfsi_esms, see paragraph 21.1.).  The EU-LFS is designed to give accurate quarterly information at national level as well as annual information at NUTS 2 regional level and the compilation of these figures is well specified in the regulation. Microdata including the NUTS 2 level codes are provided by all the participating countries with a good degree of geographical comparability, which allows the production and dissemination of a complete set of comparable indicators for this territorial level. At present the transmission of the regional labour market data at NUTS 3 level has no legal basis. However many countries transmit NUTS 3 figures to Eurostat on a voluntary basis, under the understanding that they are not for publication with such detail, but for aggregation in few categories per country, i.e., metropolitan regions and urban-rural typology. Most of the NUTS 3 data are based on the LFS while some countries transmit data based on registers, administrative data, small area estimation and other reliable sources.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 16 April, 2019
      Select Dataset
      The source for the regional labour market information down to NUTS level 2 is the EU Labour Force Survey (EU-LFS). This is a quarterly household sample survey conducted in all Member States of the EU and in EFTA and Candidate countries.  The EU-LFS survey follows the definitions and recommendations of the International Labour Organisation (ILO). To achieve further harmonisation, the Member States also adhere to common principles when formulating questionnaires. The LFS' target population is made up of all persons in private households aged 15 and over. For more information see the EU Labour Force Survey (lfsi_esms, see paragraph 21.1.).  The EU-LFS is designed to give accurate quarterly information at national level as well as annual information at NUTS 2 regional level and the compilation of these figures is well specified in the regulation. Microdata including the NUTS 2 level codes are provided by all the participating countries with a good degree of geographical comparability, which allows the production and dissemination of a complete set of comparable indicators for this territorial level. At present the transmission of the regional labour market data at NUTS 3 level has no legal basis. However many countries transmit NUTS 3 figures to Eurostat on a voluntary basis, under the understanding that they are not for publication with such detail, but for aggregation in few categories per country, i.e., metropolitan regions and urban-rural typology. Most of the NUTS 3 data are based on the LFS while some countries transmit data based on registers, administrative data, small area estimation and other reliable sources.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 26 March, 2019
      Select Dataset
      The source for the regional labour market information down to NUTS level 2 is the EU Labour Force Survey (EU-LFS). This is a quarterly household sample survey conducted in all Member States of the EU and in EFTA and Candidate countries.  The EU-LFS survey follows the definitions and recommendations of the International Labour Organisation (ILO). To achieve further harmonisation, the Member States also adhere to common principles when formulating questionnaires. The LFS' target population is made up of all persons in private households aged 15 and over. For more information see the EU Labour Force Survey (lfsi_esms, see paragraph 21.1.).  The EU-LFS is designed to give accurate quarterly information at national level as well as annual information at NUTS 2 regional level and the compilation of these figures is well specified in the regulation. Microdata including the NUTS 2 level codes are provided by all the participating countries with a good degree of geographical comparability, which allows the production and dissemination of a complete set of comparable indicators for this territorial level. At present the transmission of the regional labour market data at NUTS 3 level has no legal basis. However many countries transmit NUTS 3 figures to Eurostat on a voluntary basis, under the understanding that they are not for publication with such detail, but for aggregation in few categories per country, i.e., metropolitan regions and urban-rural typology. Most of the NUTS 3 data are based on the LFS while some countries transmit data based on registers, administrative data, small area estimation and other reliable sources.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 17 April, 2019
      Select Dataset
      The source for the regional labour market information down to NUTS level 2 is the EU Labour Force Survey (EU-LFS). This is a quarterly household sample survey conducted in all Member States of the EU and in EFTA and Candidate countries.  The EU-LFS survey follows the definitions and recommendations of the International Labour Organisation (ILO). To achieve further harmonisation, the Member States also adhere to common principles when formulating questionnaires. The LFS' target population is made up of all persons in private households aged 15 and over. For more information see the EU Labour Force Survey (lfsi_esms, see paragraph 21.1.).  The EU-LFS is designed to give accurate quarterly information at national level as well as annual information at NUTS 2 regional level and the compilation of these figures is well specified in the regulation. Microdata including the NUTS 2 level codes are provided by all the participating countries with a good degree of geographical comparability, which allows the production and dissemination of a complete set of comparable indicators for this territorial level. At present the transmission of the regional labour market data at NUTS 3 level has no legal basis. However many countries transmit NUTS 3 figures to Eurostat on a voluntary basis, under the understanding that they are not for publication with such detail, but for aggregation in few categories per country, i.e., metropolitan regions and urban-rural typology. Most of the NUTS 3 data are based on the LFS while some countries transmit data based on registers, administrative data, small area estimation and other reliable sources.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 25 March, 2019
      Select Dataset
      The folder 'population by educational attainment level (edat1)' presents data on the highest level of education successfully completed by the individuals of a given population. The folder 'transition from education to work (edatt)' covers data on young people neither in employment nor in education and training – NEET, early leavers from education and training and the labour status of young people by years since completion of highest level of education. The data shown are calculated as annual averages of quarterly EU Labour Force Survey data (EU-LFS). Up to the reference year 2008, the data source (EU-LFS) is, where necessary, adjusted and enriched in various ways, in accordance with the specificities of an indicator, including the following:correction of the main breaks in the LFS series,estimation of the missing values, i.e. in case of missing quarters, annual results and EU aggregates are estimated using adjusted quarterly national labour force survey data or interpolations of the EU-LFS data with reference to the available quarter(s). Details on the adjustments are available in CIRCABC. The adjustments are applied in the following online tables:Population by educational attainment level (edat1)   - Population by educational attainment level, sex and age (%) - main indicators (edat_lfse_03) - Population aged 25-64 by educational attainment level, sex and NUTS 2 regions (%) (edat_lfse_04) - Population aged 30-34 by educational attainment level, sex and NUTS 2 regions (%) (edat_lfse_12) (Other tables shown in the folder 'population by educational attainment level (edat1)' are not adjusted and therefore the results in these tables might differ).Young people by educational and labour status (incl. neither in employment nor in education and training - NEET) (edatt0) – all tablesEarly leavers from education and training (edatt1) – all tablesLabour status of young people by years since completion of highest level of education (edatt2) – all tables  LFS ad-hoc module data available in the folder 'transition from education to work (edatt)' are not adjusted.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 22 March, 2019
      Select Dataset
      Adult participation in learning (previously named 'lifelong learning') refers to persons aged 25 to 64 who stated that they received education or training in the four weeks preceding the survey (numerator). The denominator consists of the total population of the same age group, excluding those who did not answer to the question 'participation in education and training'. Both the numerator and the denominator come from the EU Labour Force Survey. The information collected relates to all education or training whether or not relevant to the respondent's current or possible future job.
    • November 2017
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 05 December, 2017
      Select Dataset
      Data in this domain constitute only a small part of the entire National Accounts data range available from Eurostat. Annual and quarterly national accounts are compiled in accordance with the European System of Accounts - ESA 2010as defined in Annex B of the Council Regulation (EU) No 549/2013 of the European Parliament and of the Council of 21 May 2013. The previous European System of Accounts, ESA95, was reviewed to bring national accounts in the European Union, in line with new economic environment, advances in methodological research and needs of users and the updated national accounts framework at the international level, the SNA 2008. The revisions are reflected in an updated Regulation of the European Parliament and of the Council on the European system of national and regional accounts in the European Union of 2010 (ESA 2010). The associated transmission programme is also updated and data transmissions in accordance with ESA 2010 are compulsory from September 2014 onwards. The annual data of this domain consists of the following collections: 1. Main GDP aggregates: main components from the output, expenditure and income side. nama_10_gdp: GDP and main components (output, expenditure and income   The quarterly data of this domain consists of the following collections 1. Main GDP aggregates, main components from the output, expenditure and income side, expenditure breakdowns by industry and assets. namq_10_ma: Main GDP aggregatesnamq_10_gdp: GDP and main components (output, expenditure and incomenamq_10_fcs: Final consumption aggregates by durabilitynamq_10_exi: Exports and imports by Member States of the EU/third countries 2. Breakdowns of GDP aggregates and employment data by main industries and asset classes. namq_10_bbr: Basic breakdowns main GDP aggregates and employment (by industry and assets)namq_10_a10: Gross value added and income by A*10 industrynamq_10_an6: Gross fixed capital formation by AN_F6 asset typenamq_10_a10_e: Employment by A*10 industry breakdowns Geographical entities covered are the European Union, the euro area, EU Member States, Candidate Countries, EFTA countries, US, Japan and possibly other countries on an ad-hoc basis. Data sources: National Statistical Institutes
    • November 2017
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 02 December, 2017
      Select Dataset
      Data in this domain constitute only a small part of the entire National Accounts data range available from Eurostat. Annual and quarterly national accounts are compiled in accordance with the European System of Accounts - ESA 2010as defined in Annex B of the Council Regulation (EU) No 549/2013 of the European Parliament and of the Council of 21 May 2013. The previous European System of Accounts, ESA95, was reviewed to bring national accounts in the European Union, in line with new economic environment, advances in methodological research and needs of users and the updated national accounts framework at the international level, the SNA 2008. The revisions are reflected in an updated Regulation of the European Parliament and of the Council on the European system of national and regional accounts in the European Union of 2010 (ESA 2010). The associated transmission programme is also updated and data transmissions in accordance with ESA 2010 are compulsory from September 2014 onwards. The annual data of this domain consists of the following collections: 1. Main GDP aggregates: main components from the output, expenditure and income side. nama_10_gdp: GDP and main components (output, expenditure and income   The quarterly data of this domain consists of the following collections 1. Main GDP aggregates, main components from the output, expenditure and income side, expenditure breakdowns by industry and assets. namq_10_ma: Main GDP aggregatesnamq_10_gdp: GDP and main components (output, expenditure and incomenamq_10_fcs: Final consumption aggregates by durabilitynamq_10_exi: Exports and imports by Member States of the EU/third countries 2. Breakdowns of GDP aggregates and employment data by main industries and asset classes. namq_10_bbr: Basic breakdowns main GDP aggregates and employment (by industry and assets)namq_10_a10: Gross value added and income by A*10 industrynamq_10_an6: Gross fixed capital formation by AN_F6 asset typenamq_10_a10_e: Employment by A*10 industry breakdowns Geographical entities covered are the European Union, the euro area, EU Member States, Candidate Countries, EFTA countries, US, Japan and possibly other countries on an ad-hoc basis. Data sources: National Statistical Institutes
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 22 March, 2019
      Select Dataset
      The Economic Accounts for Agriculture (EAA) provide detailed information on income in the agricultural sector. The purpose is to analyse the production process of the agricultural industry and the primary income generated by this production. The accounts are therefore based on the industry concept. The EAA accounts are detailed data on value of output (producer prices and basic prices), intermediate consumption, subsidies and taxes, consumption of fixed capital, rent and interests, capital formation etc. The values are in current as well as in constant prices. Agricultural Labour Input (ALI) and Unit Values (UV) are an integrated part of the overall concept of Economic Accounts for Agriculture. The Economic accounts for agriculture (EAA) are a satellite account of the European System of Accounts (ESA2010), providing complementary information and concepts adapted to the particular nature of the agricultural industry. Although their structure very closely matches that of the national accounts, their compilation requires the formulation of appropriate rules and methods. National Statistical Institutes or Ministries of Agriculture are responsible for data collection and calculation of national EAA, in accordance with EC Regulations. Eurostat is responsible for the EU aggregations. Regional data EAA accounts are compiled at regional level (NUTS2), but only in values in current prices. The labour input data and Unit values are not broken down to regional level. Please note that for paragraphs where no metadata for regional data has been specified, the regional metadata is identical to the metadata provided for the national data. Frequency of data collection for data under Regulation (EC) 138/2004 and gentlemen's agreement, deadline for transmission for years 2015-2016.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 22 March, 2019
      Select Dataset
      The Economic Accounts for Agriculture (EAA) provide detailed information on income in the agricultural sector. The purpose is to analyse the production process of the agricultural industry and the primary income generated by this production. The accounts are therefore based on the industry concept. The EAA accounts are detailed data on value of output (producer prices and basic prices), intermediate consumption, subsidies and taxes, consumption of fixed capital, rent and interests, capital formation etc. The values are in current as well as in constant prices. Agricultural Labour Input (ALI) and Unit Values (UV) are an integrated part of the overall concept of Economic Accounts for Agriculture. The Economic accounts for agriculture (EAA) are a satellite account of the European System of Accounts (ESA2010), providing complementary information and concepts adapted to the particular nature of the agricultural industry. Although their structure very closely matches that of the national accounts, their compilation requires the formulation of appropriate rules and methods. National Statistical Institutes or Ministries of Agriculture are responsible for data collection and calculation of national EAA, in accordance with EC Regulations. Eurostat is responsible for the EU aggregations. Regional data EAA accounts are compiled at regional level (NUTS2), but only in values in current prices. The labour input data and Unit values are not broken down to regional level. Please note that for paragraphs where no metadata for regional data has been specified, the regional metadata is identical to the metadata provided for the national data. Frequency of data collection for data under Regulation (EC) 138/2004 and gentlemen's agreement, deadline for transmission for years 2015-2016.   Reg. CE 138/2004 Gentlemen's agreement Web Form in eDamis Excel SDTT file in CIRCA Transmission date via eDamis Edamis DATASET to use   EAA Second Estimates 2015   X - - X 31 January 2016 COSAEA_AGR2_A EAA Constant N-1 prices Final - 2014   X - - X 30 September 2015   COSAEA_AGR3CON_A EAA at current prices Final - 2014   X - - X COSAEA_AGR3CUR_A   UV (unit Values) 2014   - X X - COSAEA_UV_A   EAA Regional data 2013   - X - X COSAEA_REGION_A   ALI (Labour Input) final 2014   X - X - COSAEA_ALI3_A   ALI (Labour Input)1st estimates 2015   X - X - 30 November 2015 COSAEA_ALI3_A   ALI (Labour Input) 2nd estimates 2015   X - X - 31 January 2016 COSAEA_ALI3_A   EAA First Estimates 2015   X - - X 30 November 2015 COSAEA_AGR1_A
    • May 2014
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 09 June, 2014
      Select Dataset
      Eurostat Dataset Id:earn_ses10_rbns The Structure of Earnings Survey (SES) is a 4-yearly survey which provides EU-wide harmonised structural data on gross earnings, hours paid and annual days of paid holiday leave, which are collected every four years under Council Regulation (EC) No 530/1999 concerning structural statistics on earnings and on labour costs, and Commission Regulation (EC) No 1738/2005 amending Regulation (EC) No 1916/2000 as regards the definition and transmission of information on the structure of earnings. The objective of this legislation is so that National Statistical Institutes (NSIs) provide accurate and harmonised data on earnings in EU Member States and other countries for policy-making and research purposes. The SES 2010 provides detailed and comparable information on relationships between the level of hourly, monthly and annual remuneration, personal characteristics of employees (sex, age, occupation, length of service, highest educational level attained, etc.) and their employer (economic activity, size and economic control of the enterprise). Regional data is also available for some countries and regional metadata is identical to that provided for national data.
    • February 2016
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 25 February, 2016
      Select Dataset
      The Structure of Earnings Survey (SES) is a 4-yearly survey which provides EU-wide harmonised structural data on gross earnings, hours paid and annual days of paid holiday leave, which are collected every four years under Council Regulation (EC) No 530/1999 concerning structural statistics on earnings and on labour costs, and Commission Regulation (EC) No 1738/2005 amending Regulation (EC) No 1916/2000 as regards the definition and transmission of information on the structure of earnings. The objective of this legislation is so that National Statistical Institutes (NSIs) provide accurate and harmonised data on earnings in EU Member States and other countries for policy-making and research purposes. The SES 2010 provides detailed and comparable information on relationships between the level of hourly, monthly and annual remuneration, personal characteristics of employees (sex, age, occupation, length of service, highest educational level attained, etc.) and their employer (economic activity, size and economic control of the enterprise). Regional data is also available for some countries and regional metadata is identical to that provided for national data.
    • August 2017
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 10 August, 2017
      Select Dataset
      The Structure of Earnings Survey (SES) is a 4-yearly survey which provides EU-wide harmonised structural data on gross earnings, hours paid and annual days of paid holiday leave, which are collected every four years under Council Regulation (EC) No 530/1999 concerning structural statistics on earnings and on labour costs, and Commission Regulation (EC) No 1738/2005 amending Regulation (EC) No 1916/2000 as regards the definition and transmission of information on the structure of earnings. The objective of this legislation is so that National Statistical Institutes (NSIs) provide accurate and harmonised data on earnings in EU Member States and other countries for policy-making and research purposes. The SES 2014 provides detailed and comparable information on relationships between the level of hourly, monthly and annual remuneration, personal characteristics of employees (sex, age, occupation, length of service, highest educational level attained, etc.) and their employer (economic activity, size and economic control of the enterprise). Regional data is also available for some countries and regional metadata is identical to that provided for national data. The Structure of Earnings Survey (SES) is a 4-yearly survey which provides EU-wide harmonised structural data on gross earnings, hours paid and annual days of paid holiday leave, which are collected every four years under Council Regulation (EC) No 530/1999 concerning structural statistics on earnings and on labour costs, and Commission Regulation (EC) No 1738/2005 amending Regulation (EC) No 1916/2000 as regards the definition and transmission of information on the structure of earnings. The objective of this legislation is so that National Statistical Institutes (NSIs) provide accurate and harmonised data on earnings in EU Member States and other countries for policy-making and research purposes. The SES provides detailed and comparable information on relationships between the level of hourly, monthly and annual remuneration, personal characteristics of employees (sex, age, occupation, length of service, highest educational level attained, etc.) and their employer (economic activity, size and economic control of the enterprise). Regional data is also available for countries (where applicable) and regional metadata is identical to that provided for national data.
    • January 2017
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 05 February, 2017
      Select Dataset
      The Structure of Earnings Survey (SES) is a 4-yearly survey which provides EU-wide harmonised structural data on gross earnings, hours paid and annual days of paid holiday leave, which are collected every four years under Council Regulation (EC) No 530/1999 concerning structural statistics on earnings and on labour costs, and Commission Regulation (EC) No 1738/2005 amending Regulation (EC) No 1916/2000 as regards the definition and transmission of information on the structure of earnings. The objective of this legislation is so that National Statistical Institutes (NSIs) provide accurate and harmonised data on earnings in EU Member States and other countries for policy-making and research purposes. The SES 2010 provides detailed and comparable information on relationships between the level of hourly, monthly and annual remuneration, personal characteristics of employees (sex, age, occupation, length of service, highest educational level attained, etc.) and their employer (economic activity, size and economic control of the enterprise). Regional data is also available for some countries and regional metadata is identical to that provided for national data.
    • February 2016
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 25 February, 2016
      Select Dataset
      The Structure of Earnings Survey (SES) is a 4-yearly survey which provides EU-wide harmonised structural data on gross earnings, hours paid and annual days of paid holiday leave, which are collected every four years under Council Regulation (EC) No 530/1999 concerning structural statistics on earnings and on labour costs, and Commission Regulation (EC) No 1738/2005 amending Regulation (EC) No 1916/2000 as regards the definition and transmission of information on the structure of earnings. The objective of this legislation is so that National Statistical Institutes (NSIs) provide accurate and harmonised data on earnings in EU Member States and other countries for policy-making and research purposes. The SES 2010 provides detailed and comparable information on relationships between the level of hourly, monthly and annual remuneration, personal characteristics of employees (sex, age, occupation, length of service, highest educational level attained, etc.) and their employer (economic activity, size and economic control of the enterprise). Regional data is also available for some countries and regional metadata is identical to that provided for national data.
    • August 2017
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 10 August, 2017
      Select Dataset
      The Structure of Earnings Survey (SES) is a 4-yearly survey which provides EU-wide harmonised structural data on gross earnings, hours paid and annual days of paid holiday leave, which are collected every four years under Council Regulation (EC) No 530/1999 concerning structural statistics on earnings and on labour costs, and Commission Regulation (EC) No 1738/2005 amending Regulation (EC) No 1916/2000 as regards the definition and transmission of information on the structure of earnings. The objective of this legislation is so that National Statistical Institutes (NSIs) provide accurate and harmonised data on earnings in EU Member States and other countries for policy-making and research purposes. The SES 2014 provides detailed and comparable information on relationships between the level of hourly, monthly and annual remuneration, personal characteristics of employees (sex, age, occupation, length of service, highest educational level attained, etc.) and their employer (economic activity, size and economic control of the enterprise). Regional data is also available for some countries and regional metadata is identical to that provided for national data. The Structure of Earnings Survey (SES) is a 4-yearly survey which provides EU-wide harmonised structural data on gross earnings, hours paid and annual days of paid holiday leave, which are collected every four years under Council Regulation (EC) No 530/1999 concerning structural statistics on earnings and on labour costs, and Commission Regulation (EC) No 1738/2005 amending Regulation (EC) No 1916/2000 as regards the definition and transmission of information on the structure of earnings. The objective of this legislation is so that National Statistical Institutes (NSIs) provide accurate and harmonised data on earnings in EU Member States and other countries for policy-making and research purposes. The SES provides detailed and comparable information on relationships between the level of hourly, monthly and annual remuneration, personal characteristics of employees (sex, age, occupation, length of service, highest educational level attained, etc.) and their employer (economic activity, size and economic control of the enterprise). Regional data is also available for countries (where applicable) and regional metadata is identical to that provided for national data.
    • December 2009
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 27 May, 2014
      Select Dataset
      Eurostat Dataset Id:educ_bo_ou_terd The Bologna declaration was signed in 1999 by 29 European ministers responsible for higher education. Today, 46 signatory countries are engaged in the process towards a European Higher Education Area (EHEA). The Bologna Process is an intergovernmental initiative which also involves the European Commission, the Council of Europe and UNESCO-CEPES, as well as representatives of higher education institutions, students, staff, employers and quality assurance agencies. It aims to create a European Higher Education Area by 2010, and to promote the European system of higher education worldwide. More information on the Bologna process is available on http://ec.europa.eu/education/higher-education/doc1290_en.htm. In the framework of the indicators for the monitoring of the social dimension and mobility of the Bologna Process, the EU-SILC (EU Statistics on Income and Living Conditions) data of interest cover individual's educational attainment, income and, from the intergenerational transmission of poverty ad hoc module, educational attainment of the parents. The following data-sets, having EU-SILC as source, on the Bologna Process are available: A. Widening access educ_bo_ac_sobs: Individuals having completed tertiary education (ISCED 5-6), according to the educational background of their parents, by sexeduc_bo_ac_soba: Individuals having completed tertiary education (ISCED 5-6), according to the educational background of their parents, by age D. Effective outcomes and employability educ_bo_ou_attd: Annual gross income of workers by educational attainment (2006)educ_bo_ou_terd: Annual gross income of workers with tertiary education (ISCED 5-6) , by sex (2006) The general aim of the EU-SILC domain is to provide comparable statistics and indicators on key aspects of the citizens' living conditions across Europe. This domain actually contains a range of social statistics and indicators relating to the risks of income poverty and social exclusion. There are both conceptual and methodological problems in defining and measuring income poverty and social exclusion. Since a 1984 decision of the European Council, the following are regarded as poor: "those persons, families and groups of persons whose resources (material, cultural and social) are so limited as to exclude them from the minimum acceptable way of life in the Member State to which they belong". On this basis, measures of poverty at EU level adopt an approach which is both multi-dimensional and relative. In June 2006, a new set of common indicators for the social protection and social inclusion process was adopted. (For more details and definitions of these indicators: Indicators 2006). To investigate particular areas of policy interest in more detail, target secondary areas, to be collected every four years or less frequently, are added to the cross-sectional component of EU-SILC. "The intergenerational transmission of poverty" was chosen as the area to be implemented for 2005. This specific module, collected in 2005, had as purpose to collect and compile relevant and robust information on background factors linked to adult social exclusion, minimising the burden of respondents to provide accurate detailed indicators sufficiently comparable across the EU capturing the effects of childhood experiences on poverty risk. More general information on EU-SILC is available on ilc_base.htm
    • December 2009
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 27 May, 2014
      Select Dataset
      Eurostat Dataset Id:educ_bo_ou_attd The Bologna declaration was signed in 1999 by 29 European ministers responsible for higher education. Today, 46 signatory countries are engaged in the process towards a European Higher Education Area (EHEA). The Bologna Process is an intergovernmental initiative which also involves the European Commission, the Council of Europe and UNESCO-CEPES, as well as representatives of higher education institutions, students, staff, employers and quality assurance agencies. It aims to create a European Higher Education Area by 2010, and to promote the European system of higher education worldwide. More information on the Bologna process is available on http://ec.europa.eu/education/higher-education/doc1290_en.htm. In the framework of the indicators for the monitoring of the social dimension and mobility of the Bologna Process, the EU-SILC (EU Statistics on Income and Living Conditions) data of interest cover individual's educational attainment, income and, from the intergenerational transmission of poverty ad hoc module, educational attainment of the parents. The following data-sets, having EU-SILC as source, on the Bologna Process are available: A. Widening access educ_bo_ac_sobs: Individuals having completed tertiary education (ISCED 5-6), according to the educational background of their parents, by sexeduc_bo_ac_soba: Individuals having completed tertiary education (ISCED 5-6), according to the educational background of their parents, by age D. Effective outcomes and employability educ_bo_ou_attd: Annual gross income of workers by educational attainment (2006)educ_bo_ou_terd: Annual gross income of workers with tertiary education (ISCED 5-6) , by sex (2006) The general aim of the EU-SILC domain is to provide comparable statistics and indicators on key aspects of the citizens' living conditions across Europe. This domain actually contains a range of social statistics and indicators relating to the risks of income poverty and social exclusion. There are both conceptual and methodological problems in defining and measuring income poverty and social exclusion. Since a 1984 decision of the European Council, the following are regarded as poor: "those persons, families and groups of persons whose resources (material, cultural and social) are so limited as to exclude them from the minimum acceptable way of life in the Member State to which they belong". On this basis, measures of poverty at EU level adopt an approach which is both multi-dimensional and relative. In June 2006, a new set of common indicators for the social protection and social inclusion process was adopted. (For more details and definitions of these indicators: Indicators 2006). To investigate particular areas of policy interest in more detail, target secondary areas, to be collected every four years or less frequently, are added to the cross-sectional component of EU-SILC. "The intergenerational transmission of poverty" was chosen as the area to be implemented for 2005. This specific module, collected in 2005, had as purpose to collect and compile relevant and robust information on background factors linked to adult social exclusion, minimising the burden of respondents to provide accurate detailed indicators sufficiently comparable across the EU capturing the effects of childhood experiences on poverty risk. More general information on EU-SILC is available on ilc_base.htm
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 28 March, 2019
      Select Dataset
      Information on net earnings (net pay taken home, in absolute figures) and related tax-benefit rates (in %) complements gross‑earnings data with respect to disposable earnings. The transition from gross to net earnings requires the deduction of income taxes and employee's social security contributions from the gross amounts and the addition of family allowances, if appropriate. The amount of these components and therefore the ratio of net to gross earnings depend on the individual situation. A number of different family situations are considered, all referring to an average worker. Differences exist with respect to marital status (single vs. married), number of workers (only in the case of couples), number of dependent children, and level of gross earnings, expressed as a percentage of the gross earnings of an average worker (AW).  All the data are based on a widely acknowledged model developed by the OECD, which figures are obtained from national sources. The collection contains, for selected situations, data for the following variables and indicators : a)      gross and net earnings, including the transition components "income taxes", "employee's social security contributions" and "family allowances", if appropriate; b)      tax rate, defined as the income tax on gross wage earnings plus the employee's social security contributions less universal cash benefits, expressed as a percentage of gross wage earnings; c)      tax wedge on labour costs, defined as income tax on gross wage earnings plus the employee's and the employer's social security contributions, expressed as a percentage of the total labour costs of the earner. The total labour costs of the earner are defined as his/her gross earnings plus the employer's social security contributions plus payroll taxes (where applicable). The tax wedge on labour costs structural indicator is available only for single persons without children earning 67% of the AW. d)      unemployment trap, measuring the percentage of gross earnings which is taxed away through higher tax and social security contributions and the withdrawal of unemployment, and other, benefits when an unemployed person returns to employment. This structural indicator is available only for single persons without children earning 67% of the AW when in work. e)      low wage trap, measuring the percentage of gross earnings which is taxed away through the combined effects of income taxes, social security contributions and any withdrawal of benefits when gross earnings increase from 33% to 67% of AW. This structural indicator is available for single persons without children and one-earner couples with two children.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 15 February, 2019
      Select Dataset
      The source for the regional labour market information down to NUTS level 2 is the EU Labour Force Survey (EU-LFS). This is a quarterly household sample survey conducted in all Member States of the EU and in EFTA and Candidate countries.  The EU-LFS survey follows the definitions and recommendations of the International Labour Organisation (ILO). To achieve further harmonisation, the Member States also adhere to common principles when formulating questionnaires. The LFS' target population is made up of all persons in private households aged 15 and over. For more information see the EU Labour Force Survey (lfsi_esms, see paragraph 21.1.).  The EU-LFS is designed to give accurate quarterly information at national level as well as annual information at NUTS 2 regional level and the compilation of these figures is well specified in the regulation. Microdata including the NUTS 2 level codes are provided by all the participating countries with a good degree of geographical comparability, which allows the production and dissemination of a complete set of comparable indicators for this territorial level. At present the transmission of the regional labour market data at NUTS 3 level has no legal basis. However many countries transmit NUTS 3 figures to Eurostat on a voluntary basis, under the understanding that they are not for publication with such detail, but for aggregation in few categories per country, i.e., metropolitan regions and urban-rural typology. Most of the NUTS 3 data are based on the LFS while some countries transmit data based on registers, administrative data, small area estimation and other reliable sources.
    • December 2018
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 19 February, 2019
      Select Dataset
      Structural business statistics (SBS) describes the structure, conduct and performance of economic activities, down to the most detailed activity level (several hundred economic sectors). SBS are transmitted annually by the EU Member States on the basis of a legal obligation from 1995 onwards.   SBS covers all activities of the business economy with the exception of agricultural activities and personal services and the data are provided by all EU Member States, Norway and Switzerland, some candidate and potential candidate countries. The data are collected by domain of activity (annex) : Annex I - Services, Annex II - Industry, Annex III - Trade and Annex IV- Constructions and by datasets. Each annex contains several datasets as indicated in the SBS Regulation. The majority of the data is collected by National Statistical Institutes (NSIs) by means of statistical surveys, business registers or from various administrative sources. Regulatory or controlling national offices for financial institutions or central banks often provide the information required for the financial sector (NACE Rev 2 Section K / NACE Rev 1.1 Section J). Member States apply various statistical methods, according to the data source, such as grossing up, model based estimation or different forms of imputation, to ensure the quality of SBSs produced. Main characteristics (variables) of the SBS data category: Business Demographic variables (e.g. Number of enterprises)"Output related" variables (e.g. Turnover, Value added)"Input related" variables: labour input (e.g. Employment, Hours worked); goods and services input (e.g. Total of purchases); capital input (e.g. Material investments) All SBS characteristics are published on Eurostat’s website by tables and an example of the existent tables is presented below: Annual enterprise statistics: Characteristics collected are published by country and detailed on NACE Rev 2 and NACE Rev 1.1 class level (4-digits). Some classes or groups in 'services' section have been aggregated.Annual enterprise statistics broken down by size classes: Characteristics are published by country and detailed down to NACE Rev 2 and NACE Rev 1.1 group level (3-digits) and employment size class. For trade (NACE Rev 2 and NACE Rev 1.1 Section G) a supplementary breakdown by turnover size class is available.Annual regional statistics: Four characteristics are published by NUTS-2 country region and detailed on NACE Rev 2 and NACE Rev 1.1 division level (2-digits) (but to group level (3-digits) for the trade section). More information on the contents of different tables: the detail level and breakdowns required starting with the reference year 2008 is defined in Commission Regulation N° 251/2009. For previous reference years it is included in Commission Regulations (EC) N° 2701/98 and amended by Commission Regulation N°1614/2002 and Commission Regulation N°1669/2003. Several important derived indicators are generated in the form of ratios of certain monetary characteristics or per head values. A list with the available derived indicators is available below in the Annex.
    • August 2018
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 03 September, 2018
      Select Dataset
      Residence permits statistics refers to third-country nationals (persons who are not EU citizens) receiving a residence permits or an authorisation to reside in one of the EU or EFTA Member States. The definitions used for residence permits and other concepts (e.g. first permit) are presented in the section 3.4. Statistical concepts and definitions. The detailed data collection methodology is presented in Annex 8 of this metadta file. LEGAL FRAMEWORK - Residence data contain statistical information based on Article 6 of Council Regulation (CE) No 862 of 11 July 2007.  This legal framework refers to the initial residence permits data colection with 2008 first reference period (e.g. first residence permits; change of immigration status or reason to stay; all valid residence permits in the end of the year and long-term residence permits valid in the end of the year) and it provides also a general framework for newer data collections based on speciffic European legal acts (e.g. statistics on EU Blue Cards and statistics on single permits) or provided on voluntary basis (e.g. new long-term residence permits issued during the year and residence permits issued for family reunification with beneficiaries of  protection status). DATA SOURCE - Data are entirely based on administrative sources with the exception of the United Kingdom1 and are provided mainly by the Ministries of Interior or related Immigration Agencies. Data are generally disseminated in June and July in the year following the reference year. AVAILABLE DATASETS I. Residence permits statistics by reason to stay, citizenship and permit's lenght of validity based on Article 6 of Council Regulation (CE) No 862 of 11 July 2007. These statistics are avilable from 2008 reference year.     First Permits - see the definition in the section 3.4. Statistical concepts and definitions. First permits by reason, length of validity and citizenship (migr_resfirst)2. The totals presented in this tables are depended on data availability in the following four tables migr_resfam + migr_resedu+ migr_resocc+ migr_resoth.First permits issued for family reasons by reason, length of validity and citizenship (migr_resfam)First permits issued for education reasons by reason, length of validity and citizenship (migr_resedu)First permits issued for remunerated activities by reason, length of validity and citizenship (migr_resocc)First permits issued for other reasons by reason, length of validity and citizenship (migr_resoth)     Residence Permits issued with the occasion of changing the immigration status or reason to stay Change of immigration status permits by reason and citizenship (migr_reschange)               Residence permits valid in the end of the year All valid permits by reason, length of validity and citizenship on 31 December of each year (migr_resvalid)Long-term residents by citizenship on 31 December of each year (migr_reslong)     Share of long term residence permitsLong-term residents among all non-EU citizens holding residence permits by citizenship on 31 December (%) (migr_resshare) II. Residence permits statistics by age (5-year age groups) and sex collected on voluntary basis. These statistics are avilable from 2010 reference year. First permits by reason, age, sex and citizenship (migr_resfas)  All valid permits by age, sex and citizenship on 31 December of each year (migr_resvas)               Long-term residents by age, sex and citizenship on 31 December of each year (migr_reslas) III. EU Blue Cards data collection based on Article 20 of the Directive 2009/50/EC. These statistics are avilable from 2012 reference year2. EU Blue Cards by type of decision, occupation and citizenship (migr_resbc1)       Admitted family members of EU Blue Cards holders by type of decision and citizenship (migr_resbc2)EU Blue Cards holders and family members by Member State of previous residence (migr_resbc3) IV. Single Permit data collection based on Art 15 Directive 2011/98/EU. These statistics are avilable from 2013 reference year. Single Permits issued by type of decision, length of validity (migr_ressing)  V. Pilot data collections collected on voluntary basis. These statistics are avilable from 2016 reference year and the data quality assesment is ongoing. Long-term residence permits issued during the year (migr_resltr)First permits issued for family reunification with a beneficiary of protection status (migr_resfrps1)Permits valid at the end of the year for family reunification with a beneficiary of protection status (migr_resfrps2) VI. New statistics on Intra-Corporate Transfers and Seasonal Workers New data collections with 2017 first reference period are in the preparetion phase to be released in 2018: Intra-Corporate Transfers data collection under Art 24 of Directive 2014/66/EU and Seasonal Workers data collection under Art 26 Directive 2014/36/EU. Share of long-tem residence permits The indicators presented in the table 'Long-term residents among all non-EU citizens holding residence permits by citizenship on 31 December (%)' are produced within the framework of the pilot study related to the integration of migrants in the Member States, following the Zaragoza Declaration. The Zaragoza Declaration, adopted in April 2010 by EU Ministers responsible for immigrant integration issues, and approved at the Justice and Home Affairs Council on 3-4 June 2010, called upon the Commission to undertake a pilot study to examine proposals for common integration indicators and to report on the availability and quality of the data from agreed harmonised sources necessary for the calculation of these indicators. In June 2010 the ministers agreed "to promote the launching of a pilot project with a view to the evaluation of integration policies, including examining the indicators and analysing the significance of the defined indicators taking into account the national contexts, the background of diverse migrant populations and different migration and integration policies of the Member States, and reporting on the availability and quality of the data from agreed harmonised sources necessary for the calculation of these indicators". These indicators are produced on the basis of residence permit statistics collected by Eurostat on the basis of Article 6 of the Migration Statistics Regulation 862/2007. As a denominator data on the stock of all valid permits to stay at the end of each reporting year are used. As a numerator data on the stock of long-term residents are used.  Two types of long term residents are distinguished in accordance with the residence permit statistics: EU long-term resident status (as regulated by the Council Directive 2003/109/EC) and the National long-term resident status (as regulated by the national legislation in the Member States). Data for some countries may be a subject of revisions due to certain inconsistencies between categories. Data consistency between tables The data providers should use the same methodological specifications provided by Eurostat and some tables from Resper statistics should be consistent between them according to this methodology.  However, consistency issues between tables exist due to some technical limitations (e.g. different data sources) or different methodology applied to each table (see the quality information from below or the national metadata files) or different point in time of producing each tables. 1Please note that the statistics for the United Kingdom use different data sources to those used in other Member States. For that reason, the statistics on residence permits published by Eurostat for UK may not be fully comparable with the statistics reported by other countries. Statistics for the United Kingdom are not based on records of residence permits issued (as the United Kingdom does not operate a system of residence permits), but instead relate to the numbers of arriving non-EU citizens permitted to enter the country under selected immigration categories. According to the United Kingdom authorities, data are estimated from a combination of information due to be published in the Home Office Statistical Bulletin 'Control of Immigration: Statistics, United Kingdom' and unpublished management information. The 'Other reasons' category includes: diplomat, consular officer treated as exempt from control; retired persons of independent means; all other passengers given limited leave to enter who are not included in any other category; non-asylum discretionary permissions. 2 The EU Blue cards issued during the year are collected in two datasets: 1. in the table migr_resocc countig the EU Blue Cards issued as "first permits" and 2. in the EU Blue Cards counting all EU Blue Cards issued. The diference between these two categories is represented by the EU Blue cards that are not first permits. However these two tables might be updated/revised at a different point in time and the consistency between tables might be affected.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 20 February, 2019
      Select Dataset
      Residence permits statistics refers to third-country nationals (persons who are not EU citizens) receiving a residence permits or an authorisation to reside in one of the EU or EFTA Member States. The definitions used for residence permits and other concepts (e.g. first permit) are presented in the section 3.4. Statistical concepts and definitions. The detailed data collection methodology is presented in Annex 8 of this metadta file. LEGAL FRAMEWORK - Residence data contain statistical information based on Article 6 of Council Regulation (CE) No 862 of 11 July 2007.  This legal framework refers to the initial residence permits data colection with 2008 first reference period (e.g. first residence permits; change of immigration status or reason to stay; all valid residence permits in the end of the year and long-term residence permits valid in the end of the year) and it provides also a general framework for newer data collections based on speciffic European legal acts (e.g. statistics on EU Blue Cards and statistics on single permits) or provided on voluntary basis (e.g. new long-term residence permits issued during the year and residence permits issued for family reunification with beneficiaries of  protection status). DATA SOURCE - Data are entirely based on administrative sources with the exception of the United Kingdom1 and are provided mainly by the Ministries of Interior or related Immigration Agencies. Data are generally disseminated in June and July in the year following the reference year. AVAILABLE DATASETS I. Residence permits statistics by reason to stay, citizenship and permit's lenght of validity based on Article 6 of Council Regulation (CE) No 862 of 11 July 2007. These statistics are avilable from 2008 reference year.     First Permits - see the definition in the section 3.4. Statistical concepts and definitions. First permits by reason, length of validity and citizenship (migr_resfirst)2. The totals presented in this tables are depended on data availability in the following four tables migr_resfam + migr_resedu+ migr_resocc+ migr_resoth.First permits issued for family reasons by reason, length of validity and citizenship (migr_resfam)First permits issued for education reasons by reason, length of validity and citizenship (migr_resedu)First permits issued for remunerated activities by reason, length of validity and citizenship (migr_resocc)First permits issued for other reasons by reason, length of validity and citizenship (migr_resoth)     Residence Permits issued with the occasion of changing the immigration status or reason to stay Change of immigration status permits by reason and citizenship (migr_reschange)               Residence permits valid in the end of the year All valid permits by reason, length of validity and citizenship on 31 December of each year (migr_resvalid)Long-term residents by citizenship on 31 December of each year (migr_reslong)     Share of long term residence permitsLong-term residents among all non-EU citizens holding residence permits by citizenship on 31 December (%) (migr_resshare) II. Residence permits statistics by age (5-year age groups) and sex collected on voluntary basis. These statistics are avilable from 2010 reference year. First permits by reason, age, sex and citizenship (migr_resfas)  All valid permits by age, sex and citizenship on 31 December of each year (migr_resvas)               Long-term residents by age, sex and citizenship on 31 December of each year (migr_reslas) III. EU Blue Cards data collection based on Article 20 of the Directive 2009/50/EC. These statistics are avilable from 2012 reference year2. EU Blue Cards by type of decision, occupation and citizenship (migr_resbc1)       Admitted family members of EU Blue Cards holders by type of decision and citizenship (migr_resbc2)EU Blue Cards holders and family members by Member State of previous residence (migr_resbc3) IV. Single Permit data collection based on Art 15 Directive 2011/98/EU. These statistics are avilable from 2013 reference year. Single Permits issued by type of decision, length of validity (migr_ressing)  V. Pilot data collections collected on voluntary basis. These statistics are avilable from 2016 reference year and the data quality assesment is ongoing. Long-term residence permits issued during the year (migr_resltr)First permits issued for family reunification with a beneficiary of protection status (migr_resfrps1)Permits valid at the end of the year for family reunification with a beneficiary of protection status (migr_resfrps2) VI. New statistics on Intra-Corporate Transfers and Seasonal Workers New data collections with 2017 first reference period are in the preparetion phase to be released in 2018: Intra-Corporate Transfers data collection under Art 24 of Directive 2014/66/EU and Seasonal Workers data collection under Art 26 Directive 2014/36/EU. Share of long-tem residence permits The indicators presented in the table 'Long-term residents among all non-EU citizens holding residence permits by citizenship on 31 December (%)' are produced within the framework of the pilot study related to the integration of migrants in the Member States, following the Zaragoza Declaration. The Zaragoza Declaration, adopted in April 2010 by EU Ministers responsible for immigrant integration issues, and approved at the Justice and Home Affairs Council on 3-4 June 2010, called upon the Commission to undertake a pilot study to examine proposals for common integration indicators and to report on the availability and quality of the data from agreed harmonised sources necessary for the calculation of these indicators. In June 2010 the ministers agreed "to promote the launching of a pilot project with a view to the evaluation of integration policies, including examining the indicators and analysing the significance of the defined indicators taking into account the national contexts, the background of diverse migrant populations and different migration and integration policies of the Member States, and reporting on the availability and quality of the data from agreed harmonised sources necessary for the calculation of these indicators". These indicators are produced on the basis of residence permit statistics collected by Eurostat on the basis of Article 6 of the Migration Statistics Regulation 862/2007. As a denominator data on the stock of all valid permits to stay at the end of each reporting year are used. As a numerator data on the stock of long-term residents are used.  Two types of long term residents are distinguished in accordance with the residence permit statistics: EU long-term resident status (as regulated by the Council Directive 2003/109/EC) and the National long-term resident status (as regulated by the national legislation in the Member States). Data for some countries may be a subject of revisions due to certain inconsistencies between categories. Data consistency between tables The data providers should use the same methodological specifications provided by Eurostat and some tables from Resper statistics should be consistent between them according to this methodology.  However, consistency issues between tables exist due to some technical limitations (e.g. different data sources) or different methodology applied to each table (see the quality information from below or the national metadata files) or different point in time of producing each tables. 1Please note that the statistics for the United Kingdom use different data sources to those used in other Member States. For that reason, the statistics on residence permits published by Eurostat for UK may not be fully comparable with the statistics reported by other countries. Statistics for the United Kingdom are not based on records of residence permits issued (as the United Kingdom does not operate a system of residence permits), but instead relate to the numbers of arriving non-EU citizens permitted to enter the country under selected immigration categories. According to the United Kingdom authorities, data are estimated from a combination of information due to be published in the Home Office Statistical Bulletin 'Control of Immigration: Statistics, United Kingdom' and unpublished management information. The 'Other reasons' category includes: diplomat, consular officer treated as exempt from control; retired persons of independent means; all other passengers given limited leave to enter who are not included in any other category; non-asylum discretionary permissions. 2 The EU Blue cards issued during the year are collected in two datasets: 1. in the table migr_resocc countig the EU Blue Cards issued as "first permits" and 2. in the EU Blue Cards counting all EU Blue Cards issued. The diference between these two categories is represented by the EU Blue cards that are not first permits. However these two tables might be updated/revised at a different point in time and the consistency between tables might be affected.
    • March 2014
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 05 June, 2014
      Select Dataset
      Eurostat Dataset Id:lfso_06finiagps Results from the 2006 LFS (Labour Force Survey) ad hoc module on 'transition form work into retirement'.
    • March 2014
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 05 June, 2014
      Select Dataset
      Eurostat Dataset Id:lfso_06otbnagps Results from the 2006 LFS (Labour Force Survey) ad hoc module on 'transition form work into retirement'.
    • March 2014
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 30 June, 2014
      Select Dataset
      Eurostat Dataset Id:lfso_06stafagps Results from the 2006 LFS (Labour Force Survey) ad hoc module on 'transition form work into retirement'. The aim of the ad hoc module was to know how the transition at the end of the career towards full retirement is expected to take place, takes place or took place: • plans for transitions/past transitions towards full retirement • plans for exit from work Another aim was to know which factors would be/were at play in determining the exit from work, and which factors could make/could have made persons postpone the exit from work: • working conditions factors (health and safety at the workplace, flexible working time arrangements …) • other factors linked to work (training/obsolescence of skills …) • financial factors (financial incentives to remain at work or to exit) • personal factors (health, family reasons …).  
    • March 2014
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 05 June, 2014
      Select Dataset
      Eurostat Dataset Id:lfso_06reasagps Results from the 2006 LFS (Labour Force Survey) ad hoc module on 'transition form work into retirement'.
    • April 2013
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 12 December, 2015
      Select Dataset
      The European Union Labour Force Survey (EU-LFS) provides population estimates for the main labour market characteristics, such as employment, unemployment, inactivity, hours of work, occupation, economic activity and much else, as well as important socio-demographic characteristics, such as sex, age, education, households and regions of residence. Since 1999 an inherent part of the European Union labour force survey (LFS) are the so called 'ad-hoc modules' (AHM). Council Regulation No 577/98 specifies that a further set of variables (the AHM) may be added to supplement the information obtained from the core questionnaire of the LFS. The topic covered by the ad hoc module change every year, although some of them have been repeated.
    • March 2014
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 10 June, 2014
      Select Dataset
      Eurostat Dataset Id:earn_gr_nace2 This data collection has been discontinued in 2012. Data is only available up to reference year 2011. Annual data on average gross earnings and related employment are included in the Gross earnings - Annual data collection. Data are available for EU Member States, Norway, Iceland and Switzerland. Data are also broken down by: From reference year 2008 onwards average gross annual earnings per employee are providedby economic activity (NACE Rev.2 aggregates and sections B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, B_TO_E, B_TO_F, B_TO_N, B_TO_S_NOT_O, B_TO_S, G_TO_J, G_TO_N, G_TO_S_NOT_O, K_TO_N, P_TO_S and O_TO_S)for enterprises with 1+ and for enterprises with 10+ employees for the following breakdowns:FTU= full-time units, FT=full-time workers, PT=part-time workers by Total, Men and Women. Before 2008: data is broken down by economic activity (NACE Rev. 1.1 for Sections C to K and the C-E, C-F, G-I, J-K, G-K, C-K and for some Member States L, M-O, L-O and also C-O aggregates)FTU= full-time units, FT=full-time workers, PT=part-time workersgenderoccupation (ISCO-88 classification, one-digit level and the 1-5 and 7-9 aggregates)The data relate to the staff of enterprises having at least 10 employees in most countries. Countries provide these annual data using several statistical sources mainly the four-yearly SES, the EU Labour Force Survey and/or administrative data.
    • November 2013
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 10 June, 2014
      Select Dataset
      Eurostat Dataset Id:earn_gr_isco This data collection has been discontinued in 2012. Data is only available up to reference year 2011. Annual data on average gross earnings and related employment are included in the Gross earnings - Annual data collection. Data are available for EU Member States, Norway, Iceland and Switzerland. Data are also broken down by: From reference year 2008 onwards average gross annual earnings per employee are providedby economic activity (NACE Rev.2 aggregates and sections B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, B_TO_E, B_TO_F, B_TO_N, B_TO_S_NOT_O, B_TO_S, G_TO_J, G_TO_N, G_TO_S_NOT_O, K_TO_N, P_TO_S and O_TO_S)for enterprises with 1+ and for enterprises with 10+ employees for the following breakdowns:FTU= full-time units, FT=full-time workers, PT=part-time workers by Total, Men and Women. Before 2008: data is broken down by economic activity (NACE Rev. 1.1 for Sections C to K and the C-E, C-F, G-I, J-K, G-K, C-K and for some Member States L, M-O, L-O and also C-O aggregates)FTU= full-time units, FT=full-time workers, PT=part-time workersgenderoccupation (ISCO-88 classification, one-digit level and the 1-5 and 7-9 aggregates)The data relate to the staff of enterprises having at least 10 employees in most countries. Countries provide these annual data using several statistical sources mainly the four-yearly SES, the EU Labour Force Survey and/or administrative data.
    • June 2012
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 12 December, 2015
      Select Dataset
      Eurostat Dataset Id:lfsi_exi_a The indicator 'average exit age from the labour force' gives the average age of withdrawal from labour market. While based on European Union Labour Force Survey (EU-LFS) data, the indicator is calculated with special methods and periodidicty which justify the present page. The indicator is estimated with a probabilistic model, documented below, fed with data from the European Union Labour Force Survey (EU-LFS). The input data are activity rates by single age group. The indicator of 'Average exit age from the labour market' is published in the section 'LFS main indicators', which is a collection of the main statistics on the labour market. 'Population in jobless households' is also a Structural Indicator and a Sustainable Development Indicator. There are mainly two reasons to estimate the indicator with this probabilistic model instead of using a method based on self-reported retirement age, or based on people receiving pensions benefits: 1. EU-LFS data used follows definitions of employment and unemployment after the International Labour Organisation, as opposed to the notion of "being retired". There is no internationally harmonized statistical definition of retirement. 2. The method used allows to (indirectly) count definitive exits from the labour market. Instead, a retired person could potentially decide to return to the labour market, hence his/her exit would not be definitive.
    • October 2018
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 03 November, 2018
      Select Dataset
      Gross earnings are remuneration (wages and salaries) in cash paid directly to the employee, before any deductions for income tax and social security contributions paid by the employee. Data is presented for full-time employees in "industry and services".
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 23 March, 2019
      Select Dataset
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 05 March, 2019
      Select Dataset
      Labour cost statistics provide a comprehensive and detailed picture of the level, structure and short-term development of labour costs in the different sectors of economic activity in the European Union and certain other countries. All statistics are based on a harmonised definition of labour costs. Structural information on labour costs is collected through four-yearly Labour Cost Surveys (LCS), which provides details on the level and structure of labour cost data, hours worked and hours paid. LCS results are available for the reference years 2000, 2004, 2008 and 2012. All EU Member States together with Norway and Iceland (2004 onwards), Turkey and Macedonia (2008), as well as Serbia (2012) participated in the LCS. As far as available data and confidentiality rules permit, all variables and proportions are further broken down by enterprise size category, economic activity and region (for larger countries only). The data are collected by the National Statistical Institutes in most cases on the basis of stratified random samples of enterprises or local units, restricted in most countries to units with at least 10 employees. The stratification is based on economic activity, size category and region (where appropriate). Regional metadata is identical to the metadata provided for national data. Some countries also complement the survey results with administrative data. Monetary variables are expressed in EUR, national currencies (for non-euro-area countries) and Purchasing Power Standards (PPS). Labour costs are quoted in total per year, per month and per hour, as well as per capita and per full-time equivalents (FTE). Information on staff, hours worked and hours paid is quoted in aggregate and separately for full- and part-time employees.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 04 March, 2019
      Select Dataset
      Labour cost statistics provide a comprehensive and detailed picture of the level, structure and short-term development of labour costs in the different sectors of economic activity in the European Union and certain other countries. All statistics are based on a harmonised definition of labour costs. Structural information on labour costs is collected through four-yearly Labour Cost Surveys (LCS), which provides details on the level and structure of labour cost data, hours worked and hours paid. LCS results are available for the reference years 2000, 2004, 2008 and 2012. All EU Member States together with Norway and Iceland (2004 onwards), Turkey and Macedonia (2008), as well as Serbia (2012) participated in the LCS. As far as available data and confidentiality rules permit, all variables and proportions are further broken down by enterprise size category, economic activity and region (for larger countries only). The data are collected by the National Statistical Institutes in most cases on the basis of stratified random samples of enterprises or local units, restricted in most countries to units with at least 10 employees. The stratification is based on economic activity, size category and region (where appropriate). Regional metadata is identical to the metadata provided for national data. Some countries also complement the survey results with administrative data. Monetary variables are expressed in EUR, national currencies (for non-euro-area countries) and Purchasing Power Standards (PPS). Labour costs are quoted in total per year, per month and per hour, as well as per capita and per full-time equivalents (FTE). Information on staff, hours worked and hours paid is quoted in aggregate and separately for full- and part-time employees.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 15 April, 2019
      Select Dataset
      The section 'LFS series - detailed annual survey results' reports annual results from the EU-LFS. While LFS is a quarterly survey, it is also possible to produce annual results. There are several ways of doing it, see section '20.5 Data compilation' below for details. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 15 April, 2019
      Select Dataset
      The section 'LFS series - detailed quarterly survey results' reports detailed quarterly results going beyond the EU-LFS main aggregates, which have a separate data domain and some methodological differences. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • April 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 13 April, 2019
      Select Dataset
      The section 'LFS series - detailed quarterly survey results' reports detailed quarterly results going beyond the EU-LFS main aggregates, which have a separate data domain and some methodological differences. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 13 April, 2019
      Select Dataset
      The section 'LFS series - detailed annual survey results' reports annual results from the EU-LFS. While LFS is a quarterly survey, it is also possible to produce annual results. There are several ways of doing it, see section '20.5 Data compilation' below for details. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • April 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 11 April, 2019
      Select Dataset
      The section 'LFS series - detailed quarterly survey results' reports detailed quarterly results going beyond the EU-LFS main aggregates, which have a separate data domain and some methodological differences. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 30 March, 2019
      Select Dataset
      The section 'LFS series - detailed annual survey results' reports annual results from the EU-LFS. While LFS is a quarterly survey, it is also possible to produce annual results. There are several ways of doing it, see section '20.5 Data compilation' below for details. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 27 March, 2019
      Select Dataset
      The section 'LFS series - detailed quarterly survey results' reports detailed quarterly results going beyond the EU-LFS main aggregates, which have a separate data domain and some methodological differences. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 27 March, 2019
      Select Dataset
      The section 'LFS series - detailed annual survey results' reports annual results from the EU-LFS. While LFS is a quarterly survey, it is also possible to produce annual results. There are several ways of doing it, see section '20.5 Data compilation' below for details. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • April 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 10 April, 2019
      Select Dataset
      The section 'LFS series - detailed quarterly survey results' reports detailed quarterly results going beyond the EU-LFS main aggregates, which have a separate data domain and some methodological differences. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 21 March, 2019
      Select Dataset
      The section 'LFS series - detailed annual survey results' reports annual results from the EU-LFS. While LFS is a quarterly survey, it is also possible to produce annual results. There are several ways of doing it, see section '20.5 Data compilation' below for details. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 19 February, 2019
      Select Dataset
      The data collection 'LFS - specific topics, household statistics' covers a range of statistics on number, characteristics and typologies of households, based on the European Union Labour Force Survey (EU-LFS). The data collection also encompasses some labour market indicators broken down by household composition. Only annual data are available. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • March 2014
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 26 November, 2015
      Select Dataset
      The ad hoc module on work organisation and working time arrangements was included in the Labour Force Survey (LFS) and carried out in 2004. For a detailed evaluation of the ad hoc module see the publication, Eurostat (2006):"Final report of the task force for evaluating the 2004 LFS ad hoc module on work organisation and working time arrangements". The data cover all employees aged 25-49. The totals for the EU-25 referred to in the text and included in the figures and tables exclude Bulgaria and Romania since the data relate to period before these two joined the EU. There are no data for Bulgaria, the Czech Republic, Latvia, Lithuania, Poland, Sweden, and Croatia. In addition, there are no data in the following cases: a) Working arrangements by household circumstances: Denmark, Finland, Sweden, Norway and Switzerland; b) Employees working weekends and at night and convenience for personal life situation: Germany, Netherlands, Romania, Sweden, Norway and Switzerland.
    • March 2014
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 08 June, 2014
      Select Dataset
      Eurostat Dataset Id:lfso_04avovisco Results from the 2004 LFS (Labour Force Survey) ad hoc module on 'work organisation and working time arrangements'.
    • March 2014
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 26 November, 2015
      Select Dataset
      The ad hoc module on work organisation and working time arrangements was included in the Labour Force Survey (LFS) and carried out in 2004. For a detailed evaluation of the ad hoc module see the publication, Eurostat (2006):"Final report of the task force for evaluating the 2004 LFS ad hoc module on work organisation and working time arrangements". The data cover all employees aged 25-49. The totals for the EU-25 referred to in the text and included in the figures and tables exclude Bulgaria and Romania since the data relate to period before these two joined the EU. There are no data for Bulgaria, the Czech Republic, Latvia, Lithuania, Poland, Sweden, and Croatia. In addition, there are no data in the following cases: a) Working arrangements by household circumstances: Denmark, Finland, Sweden, Norway and Switzerland; b) Employees working weekends and at night and convenience for personal life situation: Germany, Netherlands, Romania, Sweden, Norway and Switzerland.
    • March 2014
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 08 June, 2014
      Select Dataset
      Eurostat Dataset Id:lfso_04avpoisco Results from the 2004 LFS (Labour Force Survey) ad hoc module on 'work organisation and working time arrangements'.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 20 February, 2019
      Select Dataset
      The data collection 'LFS - specific topics, household statistics' covers a range of statistics on number, characteristics and typologies of households, based on the European Union Labour Force Survey (EU-LFS). The data collection also encompasses some labour market indicators broken down by household composition. Only annual data are available. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 23 March, 2019
      Select Dataset
      The source for the regional labour market information down to NUTS level 2 is the EU Labour Force Survey (EU-LFS). This is a quarterly household sample survey conducted in all Member States of the EU and in EFTA and Candidate countries.  The EU-LFS survey follows the definitions and recommendations of the International Labour Organisation (ILO). To achieve further harmonisation, the Member States also adhere to common principles when formulating questionnaires. The LFS' target population is made up of all persons in private households aged 15 and over. For more information see the EU Labour Force Survey (lfsi_esms, see paragraph 21.1.).  The EU-LFS is designed to give accurate quarterly information at national level as well as annual information at NUTS 2 regional level and the compilation of these figures is well specified in the regulation. Microdata including the NUTS 2 level codes are provided by all the participating countries with a good degree of geographical comparability, which allows the production and dissemination of a complete set of comparable indicators for this territorial level. At present the transmission of the regional labour market data at NUTS 3 level has no legal basis. However many countries transmit NUTS 3 figures to Eurostat on a voluntary basis, under the understanding that they are not for publication with such detail, but for aggregation in few categories per country, i.e., metropolitan regions and urban-rural typology. Most of the NUTS 3 data are based on the LFS while some countries transmit data based on registers, administrative data, small area estimation and other reliable sources.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 15 April, 2019
      Select Dataset
      The section 'LFS series - detailed annual survey results' reports annual results from the EU-LFS. While LFS is a quarterly survey, it is also possible to produce annual results. There are several ways of doing it, see section '20.5 Data compilation' below for details. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 15 April, 2019
      Select Dataset
      The section 'LFS series - detailed quarterly survey results' reports detailed quarterly results going beyond the EU-LFS main aggregates, which have a separate data domain and some methodological differences. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • April 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 13 April, 2019
      Select Dataset
      The section 'LFS series - detailed quarterly survey results' reports detailed quarterly results going beyond the EU-LFS main aggregates, which have a separate data domain and some methodological differences. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 13 April, 2019
      Select Dataset
      The section 'LFS series - detailed annual survey results' reports annual results from the EU-LFS. While LFS is a quarterly survey, it is also possible to produce annual results. There are several ways of doing it, see section '20.5 Data compilation' below for details. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • April 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 11 April, 2019
      Select Dataset
      The section 'LFS series - detailed quarterly survey results' reports detailed quarterly results going beyond the EU-LFS main aggregates, which have a separate data domain and some methodological differences. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 27 March, 2019
      Select Dataset
      The section 'LFS series - detailed annual survey results' reports annual results from the EU-LFS. While LFS is a quarterly survey, it is also possible to produce annual results. There are several ways of doing it, see section '20.5 Data compilation' below for details. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • March 2014
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 05 June, 2014
      Select Dataset
      Eurostat Dataset Id:lfso_06finiyrsp Results from the 2006 LFS (Labour Force Survey) ad hoc module on 'transition form work into retirement'.
    • December 2018
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 19 February, 2019
      Select Dataset
      Structural business statistics (SBS) describes the structure, conduct and performance of economic activities, down to the most detailed activity level (several hundred economic sectors). SBS are transmitted annually by the EU Member States on the basis of a legal obligation from 1995 onwards.   SBS covers all activities of the business economy with the exception of agricultural activities and personal services and the data are provided by all EU Member States, Norway and Switzerland, some candidate and potential candidate countries. The data are collected by domain of activity (annex) : Annex I - Services, Annex II - Industry, Annex III - Trade and Annex IV- Constructions and by datasets. Each annex contains several datasets as indicated in the SBS Regulation. The majority of the data is collected by National Statistical Institutes (NSIs) by means of statistical surveys, business registers or from various administrative sources. Regulatory or controlling national offices for financial institutions or central banks often provide the information required for the financial sector (NACE Rev 2 Section K / NACE Rev 1.1 Section J). Member States apply various statistical methods, according to the data source, such as grossing up, model based estimation or different forms of imputation, to ensure the quality of SBSs produced. Main characteristics (variables) of the SBS data category: Business Demographic variables (e.g. Number of enterprises)"Output related" variables (e.g. Turnover, Value added)"Input related" variables: labour input (e.g. Employment, Hours worked); goods and services input (e.g. Total of purchases); capital input (e.g. Material investments) All SBS characteristics are published on Eurostat’s website by tables and an example of the existent tables is presented below: Annual enterprise statistics: Characteristics collected are published by country and detailed on NACE Rev 2 and NACE Rev 1.1 class level (4-digits). Some classes or groups in 'services' section have been aggregated.Annual enterprise statistics broken down by size classes: Characteristics are published by country and detailed down to NACE Rev 2 and NACE Rev 1.1 group level (3-digits) and employment size class. For trade (NACE Rev 2 and NACE Rev 1.1 Section G) a supplementary breakdown by turnover size class is available.Annual regional statistics: Four characteristics are published by NUTS-2 country region and detailed on NACE Rev 2 and NACE Rev 1.1 division level (2-digits) (but to group level (3-digits) for the trade section). More information on the contents of different tables: the detail level and breakdowns required starting with the reference year 2008 is defined in Commission Regulation N° 251/2009. For previous reference years it is included in Commission Regulations (EC) N° 2701/98 and amended by Commission Regulation N°1614/2002 and Commission Regulation N°1669/2003. Several important derived indicators are generated in the form of ratios of certain monetary characteristics or per head values. A list with the available derived indicators is available below in the Annex.
    • April 2013
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 12 December, 2015
      Select Dataset
      The European Union Labour Force Survey (EU-LFS) provides population estimates for the main labour market characteristics, such as employment, unemployment, inactivity, hours of work, occupation, economic activity and much else, as well as important socio-demographic characteristics, such as sex, age, education, households and regions of residence. Since 1999 an inherent part of the European Union labour force survey (LFS) are the so called 'ad-hoc modules' (AHM). Council Regulation No 577/98 specifies that a further set of variables (the AHM) may be added to supplement the information obtained from the core questionnaire of the LFS. The topic covered by the ad hoc module change every year, although some of them have been repeated.
    • March 2014
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 08 June, 2014
      Select Dataset
      Eurostat Dataset Id:lfso_05nowreh Results from the 2005 LFS (Labour Force Survey) ad hoc module on 'reconciliation between work and family life'.
    • March 2014
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 08 June, 2014
      Select Dataset
      Eurostat Dataset Id:lfso_05typech Results from the 2005 LFS (Labour Force Survey) ad hoc module on 'reconciliation between work and family life'.
    • March 2014
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 08 June, 2014
      Select Dataset
      Eurostat Dataset Id:lfso_05regch Results from the 2005 LFS (Labour Force Survey) ad hoc module on 'reconciliation between work and family life'.
    • March 2014
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 08 June, 2014
      Select Dataset
      Eurostat Dataset Id:lfso_05changh Results from the 2005 LFS (Labour Force Survey) ad hoc module on 'reconciliation between work and family life'.
    • March 2014
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 08 June, 2014
      Select Dataset
      Eurostat Dataset Id:lfso_04vawkhwus Results from the 2004 LFS (Labour Force Survey) ad hoc module on 'work organisation and working time arrangements'.
    • March 2014
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 08 June, 2014
      Select Dataset
      Eurostat Dataset Id:lfso_04vahrhwus Results from the 2004 LFS (Labour Force Survey) ad hoc module on 'work organisation and working time arrangements'.
  • B
    • October 2018
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 03 November, 2018
      Select Dataset
      The labour market policy (LMP) database was developed and maintained by Eurostat till 2013. From 2014, the LMP database is developed and maintained by European Commission's Directorate General for Employment, Social Affairs and Inclusion and LMP data are disseminated by Eurostat. European Commission's LMP database provides information on labour market interventions, which are government actions to help and support the unemployed and other disadvantaged groups in the transition from unemployment or inactivity to work. The scope of the LMP database is limited to interventions that are explicitly targeted at groups of persons with difficulties in the labour market: the unemployed, persons employed but at risk of involuntary job loss and persons currently considered as inactive persons but who would like to enter the labour market. LMP statistics are one of the data sources for monitoring the Employment Guidelines (part II of the Europe 2020 Integrated Guidelines) through the Europe 2020 Joint Assessment Framework (JAF). The guidelines specifically refer to the provision of active labour market policies, which cover LMP measures and LMP services, and adequate social security systems, which include LMP supports. The unit of observation in the LMP database is the labour market intervention and data on the expenditure and participants for each intervention are collected annually from administrative sources in each country. The database also collects extensive qualitative information that describes each intervention, how it works, the main target groups, etc. LMP interventions are classified by type of action into three broad types – services, measures and supports – and into 9 detailed categories (see 3.2 Classification system). The LMP database covers all EU Member States and Norway. Data for the EU-15 countries and Norway are available from 1998 whilst the more recently acceded EU countries started providing data at different times from 2003 onwards. The following data and metadata are available:Summary tables of expenditure and participants by type of actionFor each country: detailed tables of expenditure and participants by interventionLMP based indicators for monitoring the Employment Guidelines (for definitions see annexes below)Reference data on persons registered with Public Employment Services (PES)Qualitative reports describing the interventions in each country
    • July 2018
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 26 July, 2018
      Select Dataset
      The source for regional typology statistics are regional indicators at NUTS level 3 published on the Eurostat website or existing in the Eurostat production database. The structure of this domain is as follows: - Metropolitan regions (met)    For details see http://ec.europa.eu/eurostat/web/metropolitan-regions/overview - Maritime policy indicators (mare)    For details see http://ec.europa.eu/eurostat/web/maritime-policy-indicators/overview - Urban-rural typology (urt)    For details see http://ec.europa.eu/eurostat/web/rural-development/overview
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 30 March, 2019
      Select Dataset
      Data on cultural enterprises come from 2 data collections and are summarised in 4 Tables : a) SBS (Structural Business Statistics) Table 1. Number and average size of enterprises in the cultural sectors by NACE Rev. 2 activity (cult_ent_num) Table 2. Value added and turnover of enterprises in the cultural sectors by NACE Rev. 2 activity (cult_ent_val), in millions of EUR and as a percentage of services except trade and financial and insurance activities (i.e. NACE Rev. 2 sections H to N, without K) Table 3. Services by employment size class (NACE Rev. 2, H-N, S95) (sbs_sc_1b_se_r2)   b) Business Demography (BD) Table 4. Business demography by size class (from 2004 onwards, NACE Rev. 2) (bd_9bd_sz_cl_r2)   The data focus on culture-related sectors of activity, as identified by international experts in the final report of the European Statistical System Network on Culture (ESS-Net Culture Report 2012).   The cultural sphere in business statistics is therefore captured through the following NACE Rev. 2 codes, when they are covered (see 3.3. Sector coverage for details): J58.11 Book publishing J58.13 Publishing of newspapers J58.14 Publishing of journals and periodicals J58.21 Publishing of computer games J59 Motion picture, video and television programme production, sound recording and music publishing activities J60 Programming and broadcasting activities J63.91 News agency activities M71.11 Architectural activities M74.1 Specialised design activities R90 Creative, arts and entertainment activities R91 Libraries, archives, museums and other cultural activities
    • July 2018
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 26 July, 2018
      Select Dataset
      The source for regional typology statistics are regional indicators at NUTS level 3 published on the Eurostat website or existing in the Eurostat production database. The structure of this domain is as follows: - Metropolitan regions (met)    For details see http://ec.europa.eu/eurostat/web/metropolitan-regions/overview - Maritime policy indicators (mare)    For details see http://ec.europa.eu/eurostat/web/maritime-policy-indicators/overview - Urban-rural typology (urt)    For details see http://ec.europa.eu/eurostat/web/rural-development/overview
  • C
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 22 March, 2019
      Select Dataset
      The focus of this domain is on enlargement countries, in other words the following country groups: candidate countries — Albania (AL), the former Yugoslav Republic of Macedonia (MK), Montenegro (ME), Iceland (IS), Serbia (RS) and Turkey (TR)potential candidates — Bosnia and Herzegovina (BA), as well as Kosovo (XK) (*) An extensive range of indicators is presented in this domain, including indicators from almost every theme covered by European statistics. Only annual data are published in this domain. (*) This designation is without prejudice to positions on status and is in line with UNSCR 1244 and the ICJ Opinion on the Kosovo declaration of independence.
    • October 2016
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 20 October, 2016
      Select Dataset
      Eurostat Dataset Id:cpc_siemp  The focus of this domain is on the following country groups:Acceeding country: Croatia (HR)Candidate countries: the former Yugoslav Republic of Macedonia (MK), Montenegro (ME), Iceland (IS), Serbia (RS) and Turkey (TR)Potential candidate countries: Albania (AL), Bosnia and Herzegovina (BA), as well as Kosovo under UNSCR 1244/99 (XK)
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 March, 2019
      Select Dataset
      The domain "Income and living conditions" covers four topics: people at risk of poverty or social exclusion, income distribution and monetary poverty, living conditions and material deprivation, which are again structured into collections of indicators on specific topics. The collection "People at risk of poverty or social exclusion" houses main indicator on risk of poverty or social inclusion included in the Europe 2020 strategy as well as the intersections between sub-populations of all Europe 2020 indicators on poverty and social exclusion. The collection "Income distribution and monetary poverty" houses collections of indicators relating to poverty risk, poverty risk of working individuals as well as the distribution of income. The collection "Living conditions" hosts indicators relating to characteristics and living conditions of households, characteristics of the population according to different breakdowns, health and labour conditions, housing conditions as well as childcare related indicators. The collection "Material deprivation" covers indicators relating to economic strain, durables, housing deprivation and environment of the dwelling.
    • April 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 06 April, 2019
      Select Dataset
    • April 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 06 April, 2019
      Select Dataset
      The indicator Compensation of employees sources from the National accounts domain. Under the MIP context it is used for the calculation of the indicator Unit labour cost index. National accounts are a coherent and consistent set of macroeconomic indicators, which provide an overall picture of the economic situation and are widely used for economic analysis and forecasting, policy design and policy making. Eurostat publishes annual and quarterly national accounts data. Annual national accounts are compiled in accordance with the European System of Accounts - ESA 2010 as defined in Annex B of the Council Regulation (EU) No 549/2013 of the European Parliament and of the Council of 21 May 2013. The revisions are reflected in an updated Regulation of the European Parliament and of the Council on the European system of national and regional accounts in the European Union of 2010 (ESA 2010). The associated transmission programme is also updated and data transmissions in accordance with ESA 2010 are compulsory from September 2014 onwards.
    • April 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 06 April, 2019
      Select Dataset
      Compensation of employees (at current prices) (ESA 2010, 4.02) is defined as the total remuneration, in cash or in kind, payable by an employer to an employee in return for work done by the latter during the accounting period. Compensation of employees consists of wages and salaries, and of employers' social contributions. Seasonally and calendar adjusted data (SCA).
    • April 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 06 April, 2019
      Select Dataset
      The indicator Compensation of employees sources from the National accounts domain. Under the MIP context it is used for the calculation of the indicator Unit labour cost index. National accounts are a coherent and consistent set of macroeconomic indicators, which provide an overall picture of the economic situation and are widely used for economic analysis and forecasting, policy design and policy making. Eurostat publishes annual and quarterly national accounts data. Annual national accounts are compiled in accordance with the European System of Accounts - ESA 2010 as defined in Annex B of the Council Regulation (EU) No 549/2013 of the European Parliament and of the Council of 21 May 2013. The revisions are reflected in an updated Regulation of the European Parliament and of the Council on the European system of national and regional accounts in the European Union of 2010 (ESA 2010). The associated transmission programme is also updated and data transmissions in accordance with ESA 2010 are compulsory from September 2014 onwards.
    • February 2015
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 August, 2015
      Select Dataset
    • October 2018
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 03 November, 2018
      Select Dataset
      The indicator presents the average compensation of employee received by hour worked, expressed in euro. It is calculated by dividing national accounts data on compensation of employees for the total economy, which include wages and salaries as well as employers' social contributions, by the total number of hours worked by all employees (domestic concept). The indicator is based on European national accounts.
    • March 2009
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 08 June, 2014
      Select Dataset
      Eurostat Dataset Id:trng_inf7 General description of the ad hoc modules supplementing the Labour Force Survey (LFS)
    • October 2009
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 28 November, 2015
      Select Dataset
      The Continuing Vocational Training Survey (CVTS) collects information on enterprises’ investment in the continuing vocational training of their staff. Continuing vocational training (CVT) refers to education or training measures or activities which are financed in total or at least partly by the enterprise (directly or indirectly). Part financing could include the use of work-time for the training activity as well as financing of training equipment. Information available from the CVTS is grouped around the following topics: Training/non-training enterprisesParticipation in continuing vocational trainingPlanning and assessment of continuing vocational trainingCosts of continuing vocational training coursesTime spent on continuing vocational training courses Four waves of the CVTS have been carried out by now: CVTS 1 – reference year 1993CVTS 2 – reference year 1999CVTS 3 – reference year 2005CVTS 4 – reference year 2010 The domain "Vocational training in enterprises (trng_cvts)" presents data for 2010 and 2005 which are comparable between the two waves. 2005 data which are not comparable with 2010 data are shown in the folder "Continuing vocational training - reference year 2005 (trng_cvts3)" and 1999 data are available in the folder "Continuing vocational training - reference year 1999 (trng_cvts2)". Both folders can be found in the domain "Past series (trng_h)". The first survey (CVTS 1) was carried out in the then 12 Member States of the European Union. CVTS 1 was of pioneering nature and due to lack of comparability with the following waves data are not available in Eurostat's online database but main results are available here. The next CVTS is due for reference year 2015.
    • September 2014
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 12 December, 2015
      Select Dataset
      The Continuing Vocational Training Survey (CVTS) collects information on enterprises’ investment in the continuing vocational training of their staff. Continuing vocational training (CVT) refers to education or training measures or activities which are financed in total or at least partly by the enterprise (directly or indirectly). Part financing could include the use of work-time for the training activity as well as financing of training equipment. Information available from the CVTS is grouped around the following topics: Training/non-training enterprisesParticipation in continuing vocational trainingPlanning and assessment of continuing vocational trainingCosts of continuing vocational training coursesTime spent on continuing vocational training courses Four waves of the CVTS have been carried out by now: CVTS 1 – reference year 1993CVTS 2 – reference year 1999CVTS 3 – reference year 2005CVTS 4 – reference year 2010 The domain "Vocational training in enterprises (trng_cvts)" presents data for 2010 and 2005 which are comparable between the two waves. 2005 data which are not comparable with 2010 data are shown in the folder "Continuing vocational training - reference year 2005 (trng_cvts3)" and 1999 data are available in the folder "Continuing vocational training - reference year 1999 (trng_cvts2)". Both folders can be found in the domain "Past series (trng_h)". The first survey (CVTS 1) was carried out in the then 12 Member States of the European Union. CVTS 1 was of pioneering nature and due to lack of comparability with the following waves data are not available in Eurostat's online database but main results are available here. The next CVTS is due for reference year 2015.
    • April 2009
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 12 December, 2015
      Select Dataset
      The Continuing Vocational Training Survey (CVTS) collects information on enterprises’ investment in the continuing vocational training of their staff. Continuing vocational training (CVT) refers to education or training measures or activities which are financed in total or at least partly by the enterprise (directly or indirectly). Part financing could include the use of work-time for the training activity as well as financing of training equipment. Information available from the CVTS is grouped around the following topics: Training/non-training enterprisesParticipation in continuing vocational trainingPlanning and assessment of continuing vocational trainingCosts of continuing vocational training coursesTime spent on continuing vocational training courses Four waves of the CVTS have been carried out by now: CVTS 1 – reference year 1993CVTS 2 – reference year 1999CVTS 3 – reference year 2005CVTS 4 – reference year 2010 The domain "Vocational training in enterprises (trng_cvts)" presents data for 2010 and 2005 which are comparable between the two waves. 2005 data which are not comparable with 2010 data are shown in the folder "Continuing vocational training - reference year 2005 (trng_cvts3)" and 1999 data are available in the folder "Continuing vocational training - reference year 1999 (trng_cvts2)". Both folders can be found in the domain "Past series (trng_h)". The first survey (CVTS 1) was carried out in the then 12 Member States of the European Union. CVTS 1 was of pioneering nature and due to lack of comparability with the following waves data are not available in Eurostat's online database but main results are available here. The next CVTS is due for reference year 2015.
    • September 2014
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 12 December, 2015
      Select Dataset
      The Continuing Vocational Training Survey (CVTS) collects information on enterprises’ investment in the continuing vocational training of their staff. Continuing vocational training (CVT) refers to education or training measures or activities which are financed in total or at least partly by the enterprise (directly or indirectly). Part financing could include the use of work-time for the training activity as well as financing of training equipment. Information available from the CVTS is grouped around the following topics: Training/non-training enterprisesParticipation in continuing vocational trainingPlanning and assessment of continuing vocational trainingCosts of continuing vocational training coursesTime spent on continuing vocational training courses Four waves of the CVTS have been carried out by now: CVTS 1 – reference year 1993CVTS 2 – reference year 1999CVTS 3 – reference year 2005CVTS 4 – reference year 2010 The domain "Vocational training in enterprises (trng_cvts)" presents data for 2010 and 2005 which are comparable between the two waves. 2005 data which are not comparable with 2010 data are shown in the folder "Continuing vocational training - reference year 2005 (trng_cvts3)" and 1999 data are available in the folder "Continuing vocational training - reference year 1999 (trng_cvts2)". Both folders can be found in the domain "Past series (trng_h)". The first survey (CVTS 1) was carried out in the then 12 Member States of the European Union. CVTS 1 was of pioneering nature and due to lack of comparability with the following waves data are not available in Eurostat's online database but main results are available here. The next CVTS is due for reference year 2015.
    • October 2009
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 28 November, 2015
      Select Dataset
      The Continuing Vocational Training Survey (CVTS) collects information on enterprises’ investment in the continuing vocational training of their staff. Continuing vocational training (CVT) refers to education or training measures or activities which are financed in total or at least partly by the enterprise (directly or indirectly). Part financing could include the use of work-time for the training activity as well as financing of training equipment. Information available from the CVTS is grouped around the following topics: Training/non-training enterprisesParticipation in continuing vocational trainingPlanning and assessment of continuing vocational trainingCosts of continuing vocational training coursesTime spent on continuing vocational training courses Four waves of the CVTS have been carried out by now: CVTS 1 – reference year 1993CVTS 2 – reference year 1999CVTS 3 – reference year 2005CVTS 4 – reference year 2010 The domain "Vocational training in enterprises (trng_cvts)" presents data for 2010 and 2005 which are comparable between the two waves. 2005 data which are not comparable with 2010 data are shown in the folder "Continuing vocational training - reference year 2005 (trng_cvts3)" and 1999 data are available in the folder "Continuing vocational training - reference year 1999 (trng_cvts2)". Both folders can be found in the domain "Past series (trng_h)". The first survey (CVTS 1) was carried out in the then 12 Member States of the European Union. CVTS 1 was of pioneering nature and due to lack of comparability with the following waves data are not available in Eurostat's online database but main results are available here. The next CVTS is due for reference year 2015.
    • September 2014
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 12 December, 2015
      Select Dataset
      The Continuing Vocational Training Survey (CVTS) collects information on enterprises’ investment in the continuing vocational training of their staff. Continuing vocational training (CVT) refers to education or training measures or activities which are financed in total or at least partly by the enterprise (directly or indirectly). Part financing could include the use of work-time for the training activity as well as financing of training equipment. Information available from the CVTS is grouped around the following topics: Training/non-training enterprisesParticipation in continuing vocational trainingPlanning and assessment of continuing vocational trainingCosts of continuing vocational training coursesTime spent on continuing vocational training courses Four waves of the CVTS have been carried out by now: CVTS 1 – reference year 1993CVTS 2 – reference year 1999CVTS 3 – reference year 2005CVTS 4 – reference year 2010 The domain "Vocational training in enterprises (trng_cvts)" presents data for 2010 and 2005 which are comparable between the two waves. 2005 data which are not comparable with 2010 data are shown in the folder "Continuing vocational training - reference year 2005 (trng_cvts3)" and 1999 data are available in the folder "Continuing vocational training - reference year 1999 (trng_cvts2)". Both folders can be found in the domain "Past series (trng_h)". The first survey (CVTS 1) was carried out in the then 12 Member States of the European Union. CVTS 1 was of pioneering nature and due to lack of comparability with the following waves data are not available in Eurostat's online database but main results are available here. The next CVTS is due for reference year 2015.
    • April 2009
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 12 December, 2015
      Select Dataset
      The Continuing Vocational Training Survey (CVTS) collects information on enterprises’ investment in the continuing vocational training of their staff. Continuing vocational training (CVT) refers to education or training measures or activities which are financed in total or at least partly by the enterprise (directly or indirectly). Part financing could include the use of work-time for the training activity as well as financing of training equipment. Information available from the CVTS is grouped around the following topics: Training/non-training enterprisesParticipation in continuing vocational trainingPlanning and assessment of continuing vocational trainingCosts of continuing vocational training coursesTime spent on continuing vocational training courses Four waves of the CVTS have been carried out by now: CVTS 1 – reference year 1993CVTS 2 – reference year 1999CVTS 3 – reference year 2005CVTS 4 – reference year 2010 The domain "Vocational training in enterprises (trng_cvts)" presents data for 2010 and 2005 which are comparable between the two waves. 2005 data which are not comparable with 2010 data are shown in the folder "Continuing vocational training - reference year 2005 (trng_cvts3)" and 1999 data are available in the folder "Continuing vocational training - reference year 1999 (trng_cvts2)". Both folders can be found in the domain "Past series (trng_h)". The first survey (CVTS 1) was carried out in the then 12 Member States of the European Union. CVTS 1 was of pioneering nature and due to lack of comparability with the following waves data are not available in Eurostat's online database but main results are available here. The next CVTS is due for reference year 2015.
    • January 2014
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 11 July, 2014
      Select Dataset
      Eurostat Dataset Id:trng_cvts62 CVTS2, CVTS3 and CVTS4 data were collected with reference year 1999, 2005 and 2010 in order to provide harmonised, reliable and relevant statistical information on continuing vocational training in enterprises.CVT stands for continuing vocational training i.e. education and training occurring during paid working time or paid at least partially by employers (if training activities are organised outside paid working time). CVTS 2, 3 and 4 provide statistics on incidence of training in enterprises, participation of employees and volume of CVT courses, CVT costs as well as CVT strategies of enterprises including on Initial vocational training (IVT, i.e. apprenticeship). The section "past series on lifelong learning" presents tables which are no longer available in the same format or at the same level of precision as CVTS 4. The CVTS1 was the first survey on continuing vocational training in enterprises carried out on the EU level in a co-ordinated form (outline questionnaire, common definitions, and common recommendations with the respect to the fieldwork). The survey was of pioneering nature, and is not any longer disseminated due to lack of comparability with the following waves.
    • October 2009
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 28 November, 2015
      Select Dataset
      The Continuing Vocational Training Survey (CVTS) collects information on enterprises’ investment in the continuing vocational training of their staff. Continuing vocational training (CVT) refers to education or training measures or activities which are financed in total or at least partly by the enterprise (directly or indirectly). Part financing could include the use of work-time for the training activity as well as financing of training equipment. Information available from the CVTS is grouped around the following topics: Training/non-training enterprisesParticipation in continuing vocational trainingPlanning and assessment of continuing vocational trainingCosts of continuing vocational training coursesTime spent on continuing vocational training courses Four waves of the CVTS have been carried out by now: CVTS 1 – reference year 1993CVTS 2 – reference year 1999CVTS 3 – reference year 2005CVTS 4 – reference year 2010 The domain "Vocational training in enterprises (trng_cvts)" presents data for 2010 and 2005 which are comparable between the two waves. 2005 data which are not comparable with 2010 data are shown in the folder "Continuing vocational training - reference year 2005 (trng_cvts3)" and 1999 data are available in the folder "Continuing vocational training - reference year 1999 (trng_cvts2)". Both folders can be found in the domain "Past series (trng_h)". The first survey (CVTS 1) was carried out in the then 12 Member States of the European Union. CVTS 1 was of pioneering nature and due to lack of comparability with the following waves data are not available in Eurostat's online database but main results are available here. The next CVTS is due for reference year 2015.
    • September 2014
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 12 December, 2015
      Select Dataset
      The Continuing Vocational Training Survey (CVTS) collects information on enterprises’ investment in the continuing vocational training of their staff. Continuing vocational training (CVT) refers to education or training measures or activities which are financed in total or at least partly by the enterprise (directly or indirectly). Part financing could include the use of work-time for the training activity as well as financing of training equipment. Information available from the CVTS is grouped around the following topics: Training/non-training enterprisesParticipation in continuing vocational trainingPlanning and assessment of continuing vocational trainingCosts of continuing vocational training coursesTime spent on continuing vocational training courses Four waves of the CVTS have been carried out by now: CVTS 1 – reference year 1993CVTS 2 – reference year 1999CVTS 3 – reference year 2005CVTS 4 – reference year 2010 The domain "Vocational training in enterprises (trng_cvts)" presents data for 2010 and 2005 which are comparable between the two waves. 2005 data which are not comparable with 2010 data are shown in the folder "Continuing vocational training - reference year 2005 (trng_cvts3)" and 1999 data are available in the folder "Continuing vocational training - reference year 1999 (trng_cvts2)". Both folders can be found in the domain "Past series (trng_h)". The first survey (CVTS 1) was carried out in the then 12 Member States of the European Union. CVTS 1 was of pioneering nature and due to lack of comparability with the following waves data are not available in Eurostat's online database but main results are available here. The next CVTS is due for reference year 2015.
    • April 2009
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 12 December, 2015
      Select Dataset
      The Continuing Vocational Training Survey (CVTS) collects information on enterprises’ investment in the continuing vocational training of their staff. Continuing vocational training (CVT) refers to education or training measures or activities which are financed in total or at least partly by the enterprise (directly or indirectly). Part financing could include the use of work-time for the training activity as well as financing of training equipment. Information available from the CVTS is grouped around the following topics: Training/non-training enterprisesParticipation in continuing vocational trainingPlanning and assessment of continuing vocational trainingCosts of continuing vocational training coursesTime spent on continuing vocational training courses Four waves of the CVTS have been carried out by now: CVTS 1 – reference year 1993CVTS 2 – reference year 1999CVTS 3 – reference year 2005CVTS 4 – reference year 2010 The domain "Vocational training in enterprises (trng_cvts)" presents data for 2010 and 2005 which are comparable between the two waves. 2005 data which are not comparable with 2010 data are shown in the folder "Continuing vocational training - reference year 2005 (trng_cvts3)" and 1999 data are available in the folder "Continuing vocational training - reference year 1999 (trng_cvts2)". Both folders can be found in the domain "Past series (trng_h)". The first survey (CVTS 1) was carried out in the then 12 Member States of the European Union. CVTS 1 was of pioneering nature and due to lack of comparability with the following waves data are not available in Eurostat's online database but main results are available here. The next CVTS is due for reference year 2015.
    • February 2011
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 28 November, 2015
      Select Dataset
      The Continuing Vocational Training Survey (CVTS) collects information on enterprises’ investment in the continuing vocational training of their staff. Continuing vocational training (CVT) refers to education or training measures or activities which are financed in total or at least partly by the enterprise (directly or indirectly). Part financing could include the use of work-time for the training activity as well as financing of training equipment. Information available from the CVTS is grouped around the following topics: Training/non-training enterprisesParticipation in continuing vocational trainingPlanning and assessment of continuing vocational trainingCosts of continuing vocational training coursesTime spent on continuing vocational training courses Four waves of the CVTS have been carried out by now: CVTS 1 – reference year 1993CVTS 2 – reference year 1999CVTS 3 – reference year 2005CVTS 4 – reference year 2010 The domain "Vocational training in enterprises (trng_cvts)" presents data for 2010 and 2005 which are comparable between the two waves. 2005 data which are not comparable with 2010 data are shown in the folder "Continuing vocational training - reference year 2005 (trng_cvts3)" and 1999 data are available in the folder "Continuing vocational training - reference year 1999 (trng_cvts2)". Both folders can be found in the domain "Past series (trng_h)". The first survey (CVTS 1) was carried out in the then 12 Member States of the European Union. CVTS 1 was of pioneering nature and due to lack of comparability with the following waves data are not available in Eurostat's online database but main results are available here. The next CVTS is due for reference year 2015.
    • September 2014
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 12 December, 2015
      Select Dataset
      The Continuing Vocational Training Survey (CVTS) collects information on enterprises’ investment in the continuing vocational training of their staff. Continuing vocational training (CVT) refers to education or training measures or activities which are financed in total or at least partly by the enterprise (directly or indirectly). Part financing could include the use of work-time for the training activity as well as financing of training equipment. Information available from the CVTS is grouped around the following topics: Training/non-training enterprisesParticipation in continuing vocational trainingPlanning and assessment of continuing vocational trainingCosts of continuing vocational training coursesTime spent on continuing vocational training courses Four waves of the CVTS have been carried out by now: CVTS 1 – reference year 1993CVTS 2 – reference year 1999CVTS 3 – reference year 2005CVTS 4 – reference year 2010 The domain "Vocational training in enterprises (trng_cvts)" presents data for 2010 and 2005 which are comparable between the two waves. 2005 data which are not comparable with 2010 data are shown in the folder "Continuing vocational training - reference year 2005 (trng_cvts3)" and 1999 data are available in the folder "Continuing vocational training - reference year 1999 (trng_cvts2)". Both folders can be found in the domain "Past series (trng_h)". The first survey (CVTS 1) was carried out in the then 12 Member States of the European Union. CVTS 1 was of pioneering nature and due to lack of comparability with the following waves data are not available in Eurostat's online database but main results are available here. The next CVTS is due for reference year 2015.
    • April 2009
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 12 December, 2015
      Select Dataset
      The Continuing Vocational Training Survey (CVTS) collects information on enterprises’ investment in the continuing vocational training of their staff. Continuing vocational training (CVT) refers to education or training measures or activities which are financed in total or at least partly by the enterprise (directly or indirectly). Part financing could include the use of work-time for the training activity as well as financing of training equipment. Information available from the CVTS is grouped around the following topics: Training/non-training enterprisesParticipation in continuing vocational trainingPlanning and assessment of continuing vocational trainingCosts of continuing vocational training coursesTime spent on continuing vocational training courses Four waves of the CVTS have been carried out by now: CVTS 1 – reference year 1993CVTS 2 – reference year 1999CVTS 3 – reference year 2005CVTS 4 – reference year 2010 The domain "Vocational training in enterprises (trng_cvts)" presents data for 2010 and 2005 which are comparable between the two waves. 2005 data which are not comparable with 2010 data are shown in the folder "Continuing vocational training - reference year 2005 (trng_cvts3)" and 1999 data are available in the folder "Continuing vocational training - reference year 1999 (trng_cvts2)". Both folders can be found in the domain "Past series (trng_h)". The first survey (CVTS 1) was carried out in the then 12 Member States of the European Union. CVTS 1 was of pioneering nature and due to lack of comparability with the following waves data are not available in Eurostat's online database but main results are available here. The next CVTS is due for reference year 2015.
    • September 2014
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 12 December, 2015
      Select Dataset
      The Continuing Vocational Training Survey (CVTS) collects information on enterprises’ investment in the continuing vocational training of their staff. Continuing vocational training (CVT) refers to education or training measures or activities which are financed in total or at least partly by the enterprise (directly or indirectly). Part financing could include the use of work-time for the training activity as well as financing of training equipment. Information available from the CVTS is grouped around the following topics: Training/non-training enterprisesParticipation in continuing vocational trainingPlanning and assessment of continuing vocational trainingCosts of continuing vocational training coursesTime spent on continuing vocational training courses Four waves of the CVTS have been carried out by now: CVTS 1 – reference year 1993CVTS 2 – reference year 1999CVTS 3 – reference year 2005CVTS 4 – reference year 2010 The domain "Vocational training in enterprises (trng_cvts)" presents data for 2010 and 2005 which are comparable between the two waves. 2005 data which are not comparable with 2010 data are shown in the folder "Continuing vocational training - reference year 2005 (trng_cvts3)" and 1999 data are available in the folder "Continuing vocational training - reference year 1999 (trng_cvts2)". Both folders can be found in the domain "Past series (trng_h)". The first survey (CVTS 1) was carried out in the then 12 Member States of the European Union. CVTS 1 was of pioneering nature and due to lack of comparability with the following waves data are not available in Eurostat's online database but main results are available here. The next CVTS is due for reference year 2015.
    • October 2009
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 28 November, 2015
      Select Dataset
      The Continuing Vocational Training Survey (CVTS) collects information on enterprises’ investment in the continuing vocational training of their staff. Continuing vocational training (CVT) refers to education or training measures or activities which are financed in total or at least partly by the enterprise (directly or indirectly). Part financing could include the use of work-time for the training activity as well as financing of training equipment. Information available from the CVTS is grouped around the following topics: Training/non-training enterprisesParticipation in continuing vocational trainingPlanning and assessment of continuing vocational trainingCosts of continuing vocational training coursesTime spent on continuing vocational training courses Four waves of the CVTS have been carried out by now: CVTS 1 – reference year 1993CVTS 2 – reference year 1999CVTS 3 – reference year 2005CVTS 4 – reference year 2010 The domain "Vocational training in enterprises (trng_cvts)" presents data for 2010 and 2005 which are comparable between the two waves. 2005 data which are not comparable with 2010 data are shown in the folder "Continuing vocational training - reference year 2005 (trng_cvts3)" and 1999 data are available in the folder "Continuing vocational training - reference year 1999 (trng_cvts2)". Both folders can be found in the domain "Past series (trng_h)". The first survey (CVTS 1) was carried out in the then 12 Member States of the European Union. CVTS 1 was of pioneering nature and due to lack of comparability with the following waves data are not available in Eurostat's online database but main results are available here. The next CVTS is due for reference year 2015.
    • September 2014
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 12 December, 2015
      Select Dataset
      The Continuing Vocational Training Survey (CVTS) collects information on enterprises’ investment in the continuing vocational training of their staff. Continuing vocational training (CVT) refers to education or training measures or activities which are financed in total or at least partly by the enterprise (directly or indirectly). Part financing could include the use of work-time for the training activity as well as financing of training equipment. Information available from the CVTS is grouped around the following topics: Training/non-training enterprisesParticipation in continuing vocational trainingPlanning and assessment of continuing vocational trainingCosts of continuing vocational training coursesTime spent on continuing vocational training courses Four waves of the CVTS have been carried out by now: CVTS 1 – reference year 1993CVTS 2 – reference year 1999CVTS 3 – reference year 2005CVTS 4 – reference year 2010 The domain "Vocational training in enterprises (trng_cvts)" presents data for 2010 and 2005 which are comparable between the two waves. 2005 data which are not comparable with 2010 data are shown in the folder "Continuing vocational training - reference year 2005 (trng_cvts3)" and 1999 data are available in the folder "Continuing vocational training - reference year 1999 (trng_cvts2)". Both folders can be found in the domain "Past series (trng_h)". The first survey (CVTS 1) was carried out in the then 12 Member States of the European Union. CVTS 1 was of pioneering nature and due to lack of comparability with the following waves data are not available in Eurostat's online database but main results are available here. The next CVTS is due for reference year 2015.
    • April 2009
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 12 December, 2015
      Select Dataset
      The Continuing Vocational Training Survey (CVTS) collects information on enterprises’ investment in the continuing vocational training of their staff. Continuing vocational training (CVT) refers to education or training measures or activities which are financed in total or at least partly by the enterprise (directly or indirectly). Part financing could include the use of work-time for the training activity as well as financing of training equipment. Information available from the CVTS is grouped around the following topics: Training/non-training enterprisesParticipation in continuing vocational trainingPlanning and assessment of continuing vocational trainingCosts of continuing vocational training coursesTime spent on continuing vocational training courses Four waves of the CVTS have been carried out by now: CVTS 1 – reference year 1993CVTS 2 – reference year 1999CVTS 3 – reference year 2005CVTS 4 – reference year 2010 The domain "Vocational training in enterprises (trng_cvts)" presents data for 2010 and 2005 which are comparable between the two waves. 2005 data which are not comparable with 2010 data are shown in the folder "Continuing vocational training - reference year 2005 (trng_cvts3)" and 1999 data are available in the folder "Continuing vocational training - reference year 1999 (trng_cvts2)". Both folders can be found in the domain "Past series (trng_h)". The first survey (CVTS 1) was carried out in the then 12 Member States of the European Union. CVTS 1 was of pioneering nature and due to lack of comparability with the following waves data are not available in Eurostat's online database but main results are available here. The next CVTS is due for reference year 2015.
    • September 2014
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 12 December, 2015
      Select Dataset
      The Continuing Vocational Training Survey (CVTS) collects information on enterprises’ investment in the continuing vocational training of their staff. Continuing vocational training (CVT) refers to education or training measures or activities which are financed in total or at least partly by the enterprise (directly or indirectly). Part financing could include the use of work-time for the training activity as well as financing of training equipment. Information available from the CVTS is grouped around the following topics: Training/non-training enterprisesParticipation in continuing vocational trainingPlanning and assessment of continuing vocational trainingCosts of continuing vocational training coursesTime spent on continuing vocational training courses Four waves of the CVTS have been carried out by now: CVTS 1 – reference year 1993CVTS 2 – reference year 1999CVTS 3 – reference year 2005CVTS 4 – reference year 2010 The domain "Vocational training in enterprises (trng_cvts)" presents data for 2010 and 2005 which are comparable between the two waves. 2005 data which are not comparable with 2010 data are shown in the folder "Continuing vocational training - reference year 2005 (trng_cvts3)" and 1999 data are available in the folder "Continuing vocational training - reference year 1999 (trng_cvts2)". Both folders can be found in the domain "Past series (trng_h)". The first survey (CVTS 1) was carried out in the then 12 Member States of the European Union. CVTS 1 was of pioneering nature and due to lack of comparability with the following waves data are not available in Eurostat's online database but main results are available here. The next CVTS is due for reference year 2015.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 04 March, 2019
      Select Dataset
      This domain covers statistics and indicators on key aspects of the education systems across Europe. The data show entrants and enrolments in education levels, education personnel and the cost and type of resources dedicated to education. The standards on international statistics on education and training systems are set by the three international organisations jointly administering the annual UOE data collection: The United Nations Educational, Scientific, and Cultural Organisation Institute for Statistics (UNESCO-UIS),The Organisation for Economic Co-operation and Development (OECD) and,The Statistical Office of the European Union (EUROSTAT). The following topics are covered: Pupils and students – Enrolments and Entrants,Learning mobility,Education personnel,Education finance,Graduates,Language learning. Data and indicators disseminated include e.g. participation rates at different levels of education, shares of pupils and students by programme orientation (general/academic and vocational/professional) and in combined school and work-based programmes, enrolments in public and private institutions, tertiary education graduates, degree mobile students enrolled and graduates, pupil-teacher ratios, foreign language learning, expenditure on education per student and relative GDP etc.
    • April 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 06 April, 2019
      Select Dataset
      This domain covers statistics and indicators on key aspects of the education systems across Europe. The data show entrants and enrolments in education levels, education personnel and the cost and type of resources dedicated to education. The standards on international statistics on education and training systems are set by the three international organisations jointly administering the annual UOE data collection: The United Nations Educational, Scientific, and Cultural Organisation Institute for Statistics (UNESCO-UIS),The Organisation for Economic Co-operation and Development (OECD) and,The Statistical Office of the European Union (EUROSTAT). The following topics are covered: Pupils and students – Enrolments and Entrants,Learning mobility,Education personnel,Education finance,Graduates,Language learning. Data and indicators disseminated include e.g. participation rates at different levels of education, shares of pupils and students by programme orientation (general/academic and vocational/professional) and in combined school and work-based programmes, enrolments in public and private institutions, tertiary education graduates, degree mobile students enrolled and graduates, pupil-teacher ratios, foreign language learning, expenditure on education per student and relative GDP etc.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 04 March, 2019
      Select Dataset
      This domain covers statistics and indicators on key aspects of the education systems across Europe. The data show entrants and enrolments in education levels, education personnel and the cost and type of resources dedicated to education. The standards on international statistics on education and training systems are set by the three international organisations jointly administering the annual UOE data collection: The United Nations Educational, Scientific, and Cultural Organisation Institute for Statistics (UNESCO-UIS),The Organisation for Economic Co-operation and Development (OECD) and,The Statistical Office of the European Union (EUROSTAT). The following topics are covered: Pupils and students – Enrolments and Entrants,Learning mobility,Education personnel,Education finance,Graduates,Language learning. Data and indicators disseminated include e.g. participation rates at different levels of education, shares of pupils and students by programme orientation (general/academic and vocational/professional) and in combined school and work-based programmes, enrolments in public and private institutions, tertiary education graduates, degree mobile students enrolled and graduates, pupil-teacher ratios, foreign language learning, expenditure on education per student and relative GDP etc.
    • November 2018
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 23 November, 2018
      Select Dataset
      Statistics on culture cover many aspects of economic and social life. According to the Europe 2020 strategy, the role of culture is crucial for achieving the goal of a "smart, sustainable and inclusive" growth. Employment in cultural sector statistics aim at investigating on the dimension of the contribution of cultural employment to the overall employment. Cultural employment statistics are derived from data on employment based on the results of the European Labour Force Survey (see EU-LFS metadata) that is the main source of information about the situation and trends on the labour market in the European Union. The final report of the European Statistical System Network on Culture (ESS-Net Culture Report 2012, in particular pp. 129-226) deals with the methodology applied to cultural statistics, including the scope of the 'cultural economic activities' and 'cultural occupations' based on two reference classifications: the NACE classification (‘Nomenclature générale des Activités économiques dans les Communautés Européennes’) which classifies the employer’s main activity, andthe ISCO classification(‘International Standard Classification of Occupations’) which classifies occupations. Results from the EU-LFS allow to characterize cultural employment by different variables such as gender, age, employment status, working time, educational attainment, permanency of jobs by cross-tabulating ISCO and NACE cultural codes as defined in the ESS-Net Culture Report 2012 (Annex 3 – Table 26 and Annex 4 – Table 27).
    • November 2018
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 23 November, 2018
      Select Dataset
      Statistics on culture cover many aspects of economic and social life. According to the Europe 2020 strategy, the role of culture is crucial for achieving the goal of a "smart, sustainable and inclusive" growth. Employment in cultural sector statistics aim at investigating on the dimension of the contribution of cultural employment to the overall employment. Cultural employment statistics are derived from data on employment based on the results of the European Labour Force Survey (see EU-LFS metadata) that is the main source of information about the situation and trends on the labour market in the European Union. The final report of the European Statistical System Network on Culture (ESS-Net Culture Report 2012, in particular pp. 129-226) deals with the methodology applied to cultural statistics, including the scope of the 'cultural economic activities' and 'cultural occupations' based on two reference classifications: the NACE classification (‘Nomenclature générale des Activités économiques dans les Communautés Européennes’) which classifies the employer’s main activity, andthe ISCO classification(‘International Standard Classification of Occupations’) which classifies occupations. Results from the EU-LFS allow to characterize cultural employment by different variables such as gender, age, employment status, working time, educational attainment, permanency of jobs by cross-tabulating ISCO and NACE cultural codes as defined in the ESS-Net Culture Report 2012 (Annex 3 – Table 26 and Annex 4 – Table 27).
    • November 2018
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 23 November, 2018
      Select Dataset
      Culture statistics cover many aspects of economic and social life. According to the Europe 2020 strategy, the role of culture is crucial for achieving the goal of a "smart, sustainable and inclusive" growth. Statistics on cultural employment show the contribution of cultural employment to the overall employment and present different characteristics of the employment in this field of economy. Cultural employment statistics are derived from data on employment based on the results of the European Labour Force Survey (see EU-LFS metadata) that is the main source of information about the situation and trends on the labour market in the European Union. The final report of the European Statistical System Network on Culture (ESS-net Culture report 2012, in particular pp. 129-226) deals with the methodology applied to cultural statistics, including the scope of the 'cultural economic activities' and 'cultural occupations' based on two reference classifications: the NACE classification (‘Nomenclature générale des Activités économiques dans les Communautés Européennes’) which classifies the employer’s main activity, andthe ISCO classification (‘International Standard Classification of Occupations’) which classifies occupations. Results from the EU-LFS allow to characterize cultural employment by some core social variables (sex, age, educational attainment) and by selected labour market characteristics (self-employment, full-time work, permanent jobs and persons with one job only), by cross-tabulating ISCO and NACE cultural codes as defined in the ESS-net Culture report 2012 (Annex 3 – Table 26 and Annex 4 – Table 27). In 2016, an extension of the cultural scope was agreed upon by the Working Group 'Culture statistics' and implemented after in cultural employment statistics for reference years 2011 onwards. The publication "Culture statistics - 2016 edition" from the "Statistical books" series was based on the previous scope. Previous scope data are available here, for reference years 2008-2015: cultural employment by sexcultural employment by agecultural employment by educational attainmentcultural employment by NACE rev. 2
  • D
    • October 2018
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 24 October, 2018
      Select Dataset
      Dublin statistics contain information based on Article 4.4 of the Council Regulation 862/2007 with reference to: The number of requests for taking back or taking charge of an asylum seeker.The provisions on which the requests for taking back or taking charge are based.The decisions taken in response to the requests for taking back or taking charge.The numbers of transfers to which the decisions taken in response to the requests for taking back or taking charge lead.The number of requests for information. Data is presented country by country and for groups of country: the European Union (EU-27) and the European Economic Area (EEA).
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 22 March, 2019
      Select Dataset
      The source for the regional labour market information down to NUTS level 2 is the EU Labour Force Survey (EU-LFS). This is a quarterly household sample survey conducted in all Member States of the EU and in EFTA and Candidate countries.  The EU-LFS survey follows the definitions and recommendations of the International Labour Organisation (ILO). To achieve further harmonisation, the Member States also adhere to common principles when formulating questionnaires. The LFS' target population is made up of all persons in private households aged 15 and over. For more information see the EU Labour Force Survey (lfsi_esms, see paragraph 21.1.).  The EU-LFS is designed to give accurate quarterly information at national level as well as annual information at NUTS 2 regional level and the compilation of these figures is well specified in the regulation. Microdata including the NUTS 2 level codes are provided by all the participating countries with a good degree of geographical comparability, which allows the production and dissemination of a complete set of comparable indicators for this territorial level. At present the transmission of the regional labour market data at NUTS 3 level has no legal basis. However many countries transmit NUTS 3 figures to Eurostat on a voluntary basis, under the understanding that they are not for publication with such detail, but for aggregation in few categories per country, i.e., metropolitan regions and urban-rural typology. Most of the NUTS 3 data are based on the LFS while some countries transmit data based on registers, administrative data, small area estimation and other reliable sources.
    • March 2018
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 27 March, 2018
      Select Dataset
      Dispersion of regional employment rates (total, females, males) measures the regional (NUTS level 2) differences in employment within countries and groups of countries (EU-25, euro area). The dispersion is expressed by the coefficient of variation of employment rates of the age group 15-64. It is zero when the employment rates in all regions are identical, and it will rise if there is an increase in the differences between employment rates among regions. Employment rate of the age group 15-64 represents employed persons aged 15-64 as a percentage of the population of the same age group. The source for the regional labour market information down to NUTS level 2 is the EU Labour Force Survey (EU-LFS). This is a quarterly household sample survey conducted in all Member States of the EU and in EFTA and Candidate countries.  The EU-LFS survey follows the definitions and recommendations of the International Labour Organisation (ILO). To achieve further harmonisation, the Member States also adhere to common principles when formulating questionnaires. The LFS' target population is made up of all persons in private households aged 15 and over. For more information see the EU Labour Force Survey (lfsi_esms, see paragraph 21.1.).  Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 22 March, 2019
      Select Dataset
      The source for the regional labour market information down to NUTS level 2 is the EU Labour Force Survey (EU-LFS). This is a quarterly household sample survey conducted in all Member States of the EU and in EFTA and Candidate countries.  The EU-LFS survey follows the definitions and recommendations of the International Labour Organisation (ILO). To achieve further harmonisation, the Member States also adhere to common principles when formulating questionnaires. The LFS' target population is made up of all persons in private households aged 15 and over. For more information see the EU Labour Force Survey (lfsi_esms, see paragraph 21.1.).  The EU-LFS is designed to give accurate quarterly information at national level as well as annual information at NUTS 2 regional level and the compilation of these figures is well specified in the regulation. Microdata including the NUTS 2 level codes are provided by all the participating countries with a good degree of geographical comparability, which allows the production and dissemination of a complete set of comparable indicators for this territorial level. At present the transmission of the regional labour market data at NUTS 3 level has no legal basis. However many countries transmit NUTS 3 figures to Eurostat on a voluntary basis, under the understanding that they are not for publication with such detail, but for aggregation in few categories per country, i.e., metropolitan regions and urban-rural typology. Most of the NUTS 3 data are based on the LFS while some countries transmit data based on registers, administrative data, small area estimation and other reliable sources.
    • December 2009
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 27 May, 2014
      Select Dataset
      Eurostat Dataset Id:educ_bo_ou_mism The Bologna declaration was signed in 1999 by 29 European ministers responsible for higher education. Today, 46 signatory countries are engaged in the process towards a European Higher Education Area (EHEA). The Bologna Process is an intergovernmental initiative which also involves the European Commission, the Council of Europe and UNESCO-CEPES, as well as representatives of higher education institutions, students, staff, employers and quality assurance agencies. It aims to create a European Higher Education Area by 2010, and to promote the European system of higher education worldwide. More information on the Bologna process is available on http://ec.europa.eu/education/higher-education/doc1290_en.htm. In the framework of the indicators for the monitoring of the social dimension and mobility of the Bologna Process, the EU-SILC (EU Statistics on Income and Living Conditions) data of interest cover individual's educational attainment, income and, from the intergenerational transmission of poverty ad hoc module, educational attainment of the parents. The following data-sets, having EU-SILC as source, on the Bologna Process are available: A. Widening access educ_bo_ac_sobs: Individuals having completed tertiary education (ISCED 5-6), according to the educational background of their parents, by sexeduc_bo_ac_soba: Individuals having completed tertiary education (ISCED 5-6), according to the educational background of their parents, by age D. Effective outcomes and employability educ_bo_ou_attd: Annual gross income of workers by educational attainment (2006)educ_bo_ou_terd: Annual gross income of workers with tertiary education (ISCED 5-6) , by sex (2006) The general aim of the EU-SILC domain is to provide comparable statistics and indicators on key aspects of the citizens' living conditions across Europe. This domain actually contains a range of social statistics and indicators relating to the risks of income poverty and social exclusion. There are both conceptual and methodological problems in defining and measuring income poverty and social exclusion. Since a 1984 decision of the European Council, the following are regarded as poor: "those persons, families and groups of persons whose resources (material, cultural and social) are so limited as to exclude them from the minimum acceptable way of life in the Member State to which they belong". On this basis, measures of poverty at EU level adopt an approach which is both multi-dimensional and relative. In June 2006, a new set of common indicators for the social protection and social inclusion process was adopted. (For more details and definitions of these indicators: Indicators 2006). To investigate particular areas of policy interest in more detail, target secondary areas, to be collected every four years or less frequently, are added to the cross-sectional component of EU-SILC. "The intergenerational transmission of poverty" was chosen as the area to be implemented for 2005. This specific module, collected in 2005, had as purpose to collect and compile relevant and robust information on background factors linked to adult social exclusion, minimising the burden of respondents to provide accurate detailed indicators sufficiently comparable across the EU capturing the effects of childhood experiences on poverty risk. More general information on EU-SILC is available on ilc_base.htm
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 March, 2019
      Select Dataset
      The Adult Education Survey (AES) covers adults’ participation in education and training (formal, non-formal and informal learning) and is one of the main data sources for EU lifelong learning statistics. The AES covers the resident population aged 25-64. The reference period for the participation in education and training is the twelve months prior to the interview. The following information is available from the AES:Participation in formal education, non-formal education and training and informal learning (respectively labelled FED, NFE and INF)Volume of instruction hoursCharacteristics of the learning activitiesReasons for participatingObstacles to participationAccess to information on learning possibilitiesEmployer financing and costs of learningSelf-reported language skills Three waves of the survey have been implemented so far (2007 AES, 2011 AES and 2016 AES). The first AES – referred to as 2007 AES – was a pilot exercise and carried out on a voluntary basis in 29 countries in the EU, EFTA (European Free Trade Association) and candidate countries between 2005 and 2008. The 2011 AES was underpinned by a European legal act and thus carried out in all Member States on a mandatory basis. The 2016 AES was carried out in 2016/2017 and the dissemination of results is ongoing with the available countries. Comparable data for the three waves can be found in the following folders:Participation in education and training (last 12 months) (trng_aes_12m0)Participation in informal learning (last 12 months) (trng_aes_12m4)Access to information on education and training (last 12 months) (trng_aes_12m1)Time spent on education and training (last 12 months) (trng_aes_12m2)           Obstacles to participation in education and training (last 12 months) (trng_aes_12m3)Self-reported language skills (educ_lang_00)
    • December 2009
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 27 May, 2014
      Select Dataset
      Eurostat Dataset Id:educ_bo_ou_mity The Bologna declaration was signed in 1999 by 29 European ministers responsible for higher education. Today, 46 signatory countries are engaged in the process towards a European Higher Education Area (EHEA). The Bologna Process is an intergovernmental initiative which also involves the European Commission, the Council of Europe and UNESCO-CEPES, as well as representatives of higher education institutions, students, staff, employers and quality assurance agencies. It aims to create a European Higher Education Area by 2010, and to promote the European system of higher education worldwide. More information on the Bologna process is available on http://ec.europa.eu/education/higher-education/doc1290_en.htm. The REFLEX project (standing for 'Research into Employment and professional FLEXibility') is a large scale international project that has been carried out in 16 different countries. It focuses on the demands that the modern knowledge society places on higher education graduates, and the degree to which higher education equips gradu­ates with the competencies to meet these demands. Specifically, it consists of a follow-up of the careers of highly skilled professionals who graduated in 2000. Data reported here refer to the 2005 survey and therefore focus on graduates from higher education (ISCED 5A, bachelor's and master's degree or equivalent) with more or less 5 years of experience since leaving higher education. This includes foreign students who graduated in the reference country, students who after graduation moved to another country, part-time students, distance learners, etc. For operational reasons, graduation cohorts instead of outflow cohorts were sampled, due to the lack of good registers in countries on who stayed in education and who did not. Some graduates continue their studies in higher education and enter the labour market a few years later. They will therefore have less than 5 years of experience and cannot directly be compared with graduates who entered the labour market immediately after graduation. The project focused on the careers of highly skilled professionals. The first ten years of these careers follow more or less the following pattern: an initial phase of transition to the labour market in which the focus is on searching for a job and integrating the labour market, a second phase in which essential professional expertise is gained and career patterns start to crystallise and a third phase in which graduates assume greater responsibility on the basis of their increasing professional expertise. Appropriate moments to survey these careers should correspond more or less with the transitions between these phases. Specifically, mismatch between qualification and occupation was measured in self report (what the respondent thinks about his/her job), and indirectly assessed through the two following questions: -         What type of education do you feel was most appropriate for this work? -         What field of study do you feel was most appropriate for this work? The first one was considered with regard to the achieved level of education in order to measure the vertical mismatch (between the actual skill level and the required one), while the second one was used to determine the horizontal mismatch (being at the relevant skill level, but in another field than that of graduation).
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 22 March, 2019
      Select Dataset
      The domain "Income and living conditions" covers four topics: people at risk of poverty or social exclusion, income distribution and monetary poverty, living conditions and material deprivation, which are again structured into collections of indicators on specific topics. The collection "People at risk of poverty or social exclusion" houses main indicator on risk of poverty or social inclusion included in the Europe 2020 strategy as well as the intersections between sub-populations of all Europe 2020 indicators on poverty and social exclusion. The collection "Income distribution and monetary poverty" houses collections of indicators relating to poverty risk, poverty risk of working individuals as well as the distribution of income. The collection "Living conditions" hosts indicators relating to characteristics and living conditions of households, characteristics of the population according to different breakdowns, health and labour conditions, housing conditions as well as childcare related indicators. The collection "Material deprivation" covers indicators relating to economic strain, durables, housing deprivation and environment of the dwelling.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 22 March, 2019
      Select Dataset
      The domain "Income and living conditions" covers four topics: people at risk of poverty or social exclusion, income distribution and monetary poverty, living conditions and material deprivation, which are again structured into collections of indicators on specific topics. The collection "People at risk of poverty or social exclusion" houses main indicator on risk of poverty or social inclusion included in the Europe 2020 strategy as well as the intersections between sub-populations of all Europe 2020 indicators on poverty and social exclusion. The collection "Income distribution and monetary poverty" houses collections of indicators relating to poverty risk, poverty risk of working individuals as well as the distribution of income. The collection "Living conditions" hosts indicators relating to characteristics and living conditions of households, characteristics of the population according to different breakdowns, health and labour conditions, housing conditions as well as childcare related indicators. The collection "Material deprivation" covers indicators relating to economic strain, durables, housing deprivation and environment of the dwelling.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 23 March, 2019
      Select Dataset
      The domain "Income and living conditions" covers four topics: people at risk of poverty or social exclusion, income distribution and monetary poverty, living conditions and material deprivation, which are again structured into collections of indicators on specific topics. The collection "People at risk of poverty or social exclusion" houses main indicator on risk of poverty or social inclusion included in the Europe 2020 strategy as well as the intersections between sub-populations of all Europe 2020 indicators on poverty and social exclusion. The collection "Income distribution and monetary poverty" houses collections of indicators relating to poverty risk, poverty risk of working individuals as well as the distribution of income. The collection "Living conditions" hosts indicators relating to characteristics and living conditions of households, characteristics of the population according to different breakdowns, health and labour conditions, housing conditions as well as childcare related indicators. The collection "Material deprivation" covers indicators relating to economic strain, durables, housing deprivation and environment of the dwelling.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 13 April, 2019
      Select Dataset
      Structural business statistics (SBS) describes the structure, conduct and performance of economic activities, down to the most detailed activity level (several hundred economic sectors). SBS are transmitted annually by the EU Member States on the basis of a legal obligation from 1995 onwards.   SBS covers all activities of the business economy with the exception of agricultural activities and personal services and the data are provided by all EU Member States, Norway and Switzerland, some candidate and potential candidate countries. The data are collected by domain of activity (annex) : Annex I - Services, Annex II - Industry, Annex III - Trade and Annex IV- Constructions and by datasets. Each annex contains several datasets as indicated in the SBS Regulation. The majority of the data is collected by National Statistical Institutes (NSIs) by means of statistical surveys, business registers or from various administrative sources. Regulatory or controlling national offices for financial institutions or central banks often provide the information required for the financial sector (NACE Rev 2 Section K / NACE Rev 1.1 Section J). Member States apply various statistical methods, according to the data source, such as grossing up, model based estimation or different forms of imputation, to ensure the quality of SBSs produced. Main characteristics (variables) of the SBS data category: Business Demographic variables (e.g. Number of enterprises)"Output related" variables (e.g. Turnover, Value added)"Input related" variables: labour input (e.g. Employment, Hours worked); goods and services input (e.g. Total of purchases); capital input (e.g. Material investments) All SBS characteristics are published on Eurostat’s website by tables and an example of the existent tables is presented below: Annual enterprise statistics: Characteristics collected are published by country and detailed on NACE Rev 2 and NACE Rev 1.1 class level (4-digits). Some classes or groups in 'services' section have been aggregated.Annual enterprise statistics broken down by size classes: Characteristics are published by country and detailed down to NACE Rev 2 and NACE Rev 1.1 group level (3-digits) and employment size class. For trade (NACE Rev 2 and NACE Rev 1.1 Section G) a supplementary breakdown by turnover size class is available.Annual regional statistics: Four characteristics are published by NUTS-2 country region and detailed on NACE Rev 2 and NACE Rev 1.1 division level (2-digits) (but to group level (3-digits) for the trade section). More information on the contents of different tables: the detail level and breakdowns required starting with the reference year 2008 is defined in Commission Regulation N° 251/2009. For previous reference years it is included in Commission Regulations (EC) N° 2701/98 and amended by Commission Regulation N°1614/2002 and Commission Regulation N°1669/2003. Several important derived indicators are generated in the form of ratios of certain monetary characteristics or per head values. A list with the available derived indicators is available below in the Annex.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 06 March, 2019
      Select Dataset
      The duration of working life indicator (DWL) measures the number of years a person aged 15 is expected to be active in the labour market throughout his/her life. This indicator has been developed and produced for analysis and monitoring under the Europe 2020 employment strategy. The indicator should complement other indicators by focussing on the entire life cycle of active persons and persons in employment rather than on specific states in the life cycle, such as youth unemployment or early withdrawal from the labour force. The development of life course policies is important in order to achieve more flexibility in the working life according to different stages of the life cycle. This indicator is derived from demographic data (life tables published in Eurostat online dataset demo_mlifetable) and labour market data (activity rates defined as in the online dataset lfsi_act_a but with unpublished detail by single age groups).
    • March 2018
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 27 March, 2018
      Select Dataset
      20.1. Source data
  • E
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 22 March, 2019
      Select Dataset
      In 2011, the European Union Labour Force Survey (EU-LFS) included an ad hoc module (AHM) on employment of disabled people. The module consisted of 11 variables dealing with: Health problems and difficulties in basic activities;Limitations in work caused by health problems/difficulties in basic activities;Special assistance needed or used by people with health problems/difficulties in basic activities;Limitation in work because of other reasons. On the basis of how the module was operationalised, the following two main definitions for disability were considered for presenting the results: Disabled persons = People having a basic activity difficulty (such as seeing, hearing, walking, communicating);Disabled persons = People having a work limitation caused by a longstanding health condition and/or a basic activity difficulty. 32 countries have implemented this module: the EU 28 Member States plus Turkey, Iceland, Norway and Switzerland. The Norwegian data are not disseminated because the AHM questionnaire in Norway only partly complies with the Commission Regulation (EU) No 317/2010 and consequently, the data are incomplete and partly comparable. Missing values, don't know and refusal answers are not considered in the calculations. It means the indicators have been worked out on the respondents and validated answers only.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 22 March, 2019
      Select Dataset
      The indicator is defined as the percentage of the population aged 18-24 with at most lower secondary education and who were not in further education or training during the last four weeks preceding the survey. Lower secondary education refers to ISCED (International Standard Classification of Education) 2011 level 0-2 for data from 2014 onwards and to ISCED 1997 level 0-3C short for data up to 2013. The indicator is based on the EU Labour Force Survey.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 February, 2019
      Select Dataset
      The ad-hoc module "young people on the labour market" provides supplementary information on the correlation between work-based learning and labour market outcomes.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 22 March, 2019
      Select Dataset
      The folder 'population by educational attainment level (edat1)' presents data on the highest level of education successfully completed by the individuals of a given population. The folder 'transition from education to work (edatt)' covers data on young people neither in employment nor in education and training – NEET, early leavers from education and training and the labour status of young people by years since completion of highest level of education. The data shown are calculated as annual averages of quarterly EU Labour Force Survey data (EU-LFS). Up to the reference year 2008, the data source (EU-LFS) is, where necessary, adjusted and enriched in various ways, in accordance with the specificities of an indicator, including the following:correction of the main breaks in the LFS series,estimation of the missing values, i.e. in case of missing quarters, annual results and EU aggregates are estimated using adjusted quarterly national labour force survey data or interpolations of the EU-LFS data with reference to the available quarter(s). Details on the adjustments are available in CIRCABC. The adjustments are applied in the following online tables:Population by educational attainment level (edat1)   - Population by educational attainment level, sex and age (%) - main indicators (edat_lfse_03) - Population aged 25-64 by educational attainment level, sex and NUTS 2 regions (%) (edat_lfse_04) - Population aged 30-34 by educational attainment level, sex and NUTS 2 regions (%) (edat_lfse_12) (Other tables shown in the folder 'population by educational attainment level (edat1)' are not adjusted and therefore the results in these tables might differ).Young people by educational and labour status (incl. neither in employment nor in education and training - NEET) (edatt0) – all tablesEarly leavers from education and training (edatt1) – all tablesLabour status of young people by years since completion of highest level of education (edatt2) – all tables  LFS ad-hoc module data available in the folder 'transition from education to work (edatt)' are not adjusted.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 February, 2019
      Select Dataset
      This ad-hoc module "transition from work to retirement" aimed at answering the following main questions: how people leave the labour market,why they left the labour market,why they did not stay longer and,how long the active population, aged 50 to 69, expects to be in the labour market.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 19 February, 2019
      Select Dataset
      Eurostat Dataset Id:med_ps412 The focus of this domain is on the following countries:Algeria, Egypt, Israel, Jordan, Lebanon, Morocco, Palestinian Authority, Syria, Tunisia. Data are provided for over 1000 indicators depending on the country.   The data for the Mediterranean partner countries are supplied by and under the responsibility of the national statistical authorities  of each of the countries or territories. The data and their denomination in no way constitute the  expression of an opinion by the European Commission on the  legal status of a country or territory or on the delimitation of its frontiers. Â
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 25 March, 2019
      Select Dataset
      The source for the regional labour market information down to NUTS level 2 is the EU Labour Force Survey (EU-LFS). This is a quarterly household sample survey conducted in all Member States of the EU and in EFTA and Candidate countries.  The EU-LFS survey follows the definitions and recommendations of the International Labour Organisation (ILO). To achieve further harmonisation, the Member States also adhere to common principles when formulating questionnaires. The LFS' target population is made up of all persons in private households aged 15 and over. For more information see the EU Labour Force Survey (lfsi_esms, see paragraph 21.1.).  The EU-LFS is designed to give accurate quarterly information at national level as well as annual information at NUTS 2 regional level and the compilation of these figures is well specified in the regulation. Microdata including the NUTS 2 level codes are provided by all the participating countries with a good degree of geographical comparability, which allows the production and dissemination of a complete set of comparable indicators for this territorial level. At present the transmission of the regional labour market data at NUTS 3 level has no legal basis. However many countries transmit NUTS 3 figures to Eurostat on a voluntary basis, under the understanding that they are not for publication with such detail, but for aggregation in few categories per country, i.e., metropolitan regions and urban-rural typology. Most of the NUTS 3 data are based on the LFS while some countries transmit data based on registers, administrative data, small area estimation and other reliable sources.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 19 March, 2019
      Select Dataset
      The source for regional typology statistics are regional indicators at NUTS level 3 published on the Eurostat website or existing in the Eurostat production database. The structure of this domain is as follows: - Metropolitan regions (met)    For details see http://ec.europa.eu/eurostat/web/metropolitan-regions/overview - Maritime policy indicators (mare)    For details see http://ec.europa.eu/eurostat/web/maritime-policy-indicators/overview - Urban-rural typology (urt)    For details see http://ec.europa.eu/eurostat/web/rural-development/overview
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 25 March, 2019
      Select Dataset
      The source for the regional labour market information down to NUTS level 2 is the EU Labour Force Survey (EU-LFS). This is a quarterly household sample survey conducted in all Member States of the EU and in EFTA and Candidate countries.  The EU-LFS survey follows the definitions and recommendations of the International Labour Organisation (ILO). To achieve further harmonisation, the Member States also adhere to common principles when formulating questionnaires. The LFS' target population is made up of all persons in private households aged 15 and over. For more information see the EU Labour Force Survey (lfsi_esms, see paragraph 21.1.).  The EU-LFS is designed to give accurate quarterly information at national level as well as annual information at NUTS 2 regional level and the compilation of these figures is well specified in the regulation. Microdata including the NUTS 2 level codes are provided by all the participating countries with a good degree of geographical comparability, which allows the production and dissemination of a complete set of comparable indicators for this territorial level. At present the transmission of the regional labour market data at NUTS 3 level has no legal basis. However many countries transmit NUTS 3 figures to Eurostat on a voluntary basis, under the understanding that they are not for publication with such detail, but for aggregation in few categories per country, i.e., metropolitan regions and urban-rural typology. Most of the NUTS 3 data are based on the LFS while some countries transmit data based on registers, administrative data, small area estimation and other reliable sources.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 19 March, 2019
      Select Dataset
      The source for regional typology statistics are regional indicators at NUTS level 3 published on the Eurostat website or existing in the Eurostat production database. The structure of this domain is as follows: - Metropolitan regions (met)    For details see http://ec.europa.eu/eurostat/web/metropolitan-regions/overview - Maritime policy indicators (mare)    For details see http://ec.europa.eu/eurostat/web/maritime-policy-indicators/overview - Urban-rural typology (urt)    For details see http://ec.europa.eu/eurostat/web/rural-development/overview
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 25 March, 2019
      Select Dataset
      The source for the regional labour market information down to NUTS level 2 is the EU Labour Force Survey (EU-LFS). This is a quarterly household sample survey conducted in all Member States of the EU and in EFTA and Candidate countries.  The EU-LFS survey follows the definitions and recommendations of the International Labour Organisation (ILO). To achieve further harmonisation, the Member States also adhere to common principles when formulating questionnaires. The LFS' target population is made up of all persons in private households aged 15 and over. For more information see the EU Labour Force Survey (lfsi_esms, see paragraph 21.1.).  The EU-LFS is designed to give accurate quarterly information at national level as well as annual information at NUTS 2 regional level and the compilation of these figures is well specified in the regulation. Microdata including the NUTS 2 level codes are provided by all the participating countries with a good degree of geographical comparability, which allows the production and dissemination of a complete set of comparable indicators for this territorial level. At present the transmission of the regional labour market data at NUTS 3 level has no legal basis. However many countries transmit NUTS 3 figures to Eurostat on a voluntary basis, under the understanding that they are not for publication with such detail, but for aggregation in few categories per country, i.e., metropolitan regions and urban-rural typology. Most of the NUTS 3 data are based on the LFS while some countries transmit data based on registers, administrative data, small area estimation and other reliable sources.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 February, 2019
      Select Dataset
      This ad-hoc module "transition from work to retirement" aimed at answering the following main questions: how people leave the labour market,why they left the labour market,why they did not stay longer and,how long the active population, aged 50 to 69, expects to be in the labour market.
    • May 2016
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 09 July, 2016
      Select Dataset
      Structural business statistics (SBS) describes the structure, conduct and performance of economic activities, down to the most detailed activity level (several hundred economic sectors). SBS are transmitted annually by the EU Member States on the basis of a legal obligation from 1995 onwards.   SBS covers all activities of the business economy with the exception of agricultural activities and personal services and the data are provided by all EU Member States, Norway and Switzerland, some candidate and potential candidate countries. The data are collected by domain of activity (annex) : Annex I - Services, Annex II - Industry, Annex III - Trade and Annex IV- Constructions and by datasets. Each annex contains several datasets as indicated in the SBS Regulation. The majority of the data is collected by National Statistical Institutes (NSIs) by means of statistical surveys, business registers or from various administrative sources. Regulatory or controlling national offices for financial institutions or central banks often provide the information required for the financial sector (NACE Rev 2 Section K / NACE Rev 1.1 Section J). Member States apply various statistical methods, according to the data source, such as grossing up, model based estimation or different forms of imputation, to ensure the quality of SBSs produced. Main characteristics (variables) of the SBS data category: Business Demographic variables (e.g. Number of enterprises)"Output related" variables (e.g. Turnover, Value added)"Input related" variables: labour input (e.g. Employment, Hours worked); goods and services input (e.g. Total of purchases); capital input (e.g. Material investments) All SBS characteristics are published on Eurostat’s website by tables and an example of the existent tables is presented below: Annual enterprise statistics: Characteristics collected are published by country and detailed on NACE Rev 2 and NACE Rev 1.1 class level (4-digits). Some classes or groups in 'services' section have been aggregated.Annual enterprise statistics broken down by size classes: Characteristics are published by country and detailed down to NACE Rev 2 and NACE Rev 1.1 group level (3-digits) and employment size class. For trade (NACE Rev 2 and NACE Rev 1.1 Section G) a supplementary breakdown by turnover size class is available.Annual regional statistics: Four characteristics are published by NUTS-2 country region and detailed on NACE Rev 2 and NACE Rev 1.1 division level (2-digits) (but to group level (3-digits) for the trade section). More information on the contents of different tables: the detail level and breakdowns required starting with the reference year 2008 is defined in Commission Regulation N° 251/2009. For previous reference years it is included in Commission Regulations (EC) N° 2701/98 and amended by Commission Regulation N°1614/2002 and Commission Regulation N°1669/2003. Several important derived indicators are generated in the form of ratios of certain monetary characteristics or per head values. A list with the available derived indicators is available below in the Annex.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 21 March, 2019
      Select Dataset
      'Statistics on high-tech industry and knowledge-intensive services' (sometimes referred to as simply 'high-tech statistics') comprise economic, employment and science, technology and innovation (STI) data describing manufacturing and services industries or products traded broken down by technological intensity. The domain uses various other domains and sources of  Eurostat's official statistics (CIS, COMEXT, HRST, LFS, PATENT, R&D and SBS) and its coverage is therefore dependent on these other primary sources. Two main approaches are used in the domain to identify technology-intensity: the sectoral approach and the product approach. A third approach is used for data on high-tech and biotechnology patents aggregated on the basis of the International Patent Classification (IPC) 8th edition (see summary table in Annex 1 for which approach is used by each type of data). The sectoral approach: The sectoral approach is an aggregation of the manufacturing industries according to technological intensity (R&D expenditure/value added) and based on the Statistical classification of economic activities in the European Community (NACE)  at 2-digit level. The level of R&D intensity served as a criterion of classification of economic sectors into high-technology, medium high-technology, medium low-technology and low-technology industries. Services are mainly aggregated into knowledge-intensive services (KIS) and less knowledge-intensive services (LKIS) based on the share of tertiary educated persons at NACE 2-digit level. The sectoral approach is used for all indicators except data on high-tech trade and patents. Note that due to the revision of the NACE from NACE Rev. 1.1 to NACE Rev. 2 the definition of high-technology industries and knowledge-intensive services has changed in 2008. For high-tech statistics it means that two different definitions (one according NACE Rev. 1.1 and one according NACE Rev. 2) are used in parallel and the data according to both NACE versions are presented in separated tables depending on the data availability. For example as the LFS provides the results both by NACE Rev. 1.1 and NACE Rev. 2, all the table using this source have been duplicated to present the results by NACE Rev. 2 from 2008. For more details, see both definitions of high-tech sectors under Annexes section. Within the sectoral approach, a second classification was created , named Knowledge Intensive Activities KIA) and based on the share of tertiary educated people in each sectors of industries and services according to NACE at 2-digit level and for all EU28 Member States. A threshold was applied to judge sectors as knowledge intensive. In contrast to first sectoral approach mixing two methodologies, one for manufacturing industries and one for services, the KIA classification is based on one methodology for all the sectors of industries and services covering even public sector activities. The aggregations in use are Total Knowledge Intensive Activities (KIA) and Knowledge Intensive Activities in Business Industries (KIABI). Both classifications are made according to NACE Rev. 1.1 and NACE Rev. 2 at 2- digit level. Note that due to revision of the NACE Rev.1.1 to NACE Rev. 2 the list of Knowledge Intensive Activities has changed as well, the two definitions are used in parallel and the data are shown in two separate tables. NACE Rev.2 collection includes data starting from 2008 reference year. For more details please see the definitions under Annexes section. The product approach: The product approach was created to complement the sectoral approach and it is used for data on high-tech trade. The product list is based on the calculations of R&D intensity by groups of products (R&D expenditure/total sales). The groups classified as high-technology products are aggregated on the basis of the Standard International Trade Classification (SITC). The initial definition was built based on SITC Rev.3 and served to compile the high-tech product aggregates until 2007. With the implementation in 2007 of the new version of SITC Rev.4, the definition of high-tech groups was revised and adapted according to new classification. Starting from 2007 the Eurostat presents the trade data for high-tech groups aggregated based on the SITC Rev.4. . For more details, see definition of high-tech products under Annexes section. High-tech patents: High-tech patents are defined according to another approach. The groups classified as high-tech patents are aggregated on the basis of the International Patent Classification (IPC 8th edition). Biotechnology patents are also aggregated on the basis of the IPC 8th edition. For more details, see the aggregation list of high-tech and biotechnology patents under Annexes section. The high-tech domain also comprises the sub-domain Venture Capital Investments: data are provided by INVEST Europe (formerly named the European Private Equity and Venture Capital Association EVCA). More details are available in the Eurostat metadata under Venture capital investments. Please note that for paragraphs where no metadata for regional data has been specified, the regional metadata is identical to the metadata provided for the national data.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 13 April, 2019
      Select Dataset
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 15 April, 2019
      Select Dataset
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 20 March, 2019
      Select Dataset
      'Statistics on high-tech industry and knowledge-intensive services' (sometimes referred to as simply 'high-tech statistics') comprise economic, employment and science, technology and innovation (STI) data describing manufacturing and services industries or products traded broken down by technological intensity. The domain uses various other domains and sources of  Eurostat's official statistics (CIS, COMEXT, HRST, LFS, PATENT, R&D and SBS) and its coverage is therefore dependent on these other primary sources. Two main approaches are used in the domain to identify technology-intensity: the sectoral approach and the product approach. A third approach is used for data on high-tech and biotechnology patents aggregated on the basis of the International Patent Classification (IPC) 8th edition (see summary table in Annex 1 for which approach is used by each type of data). The sectoral approach: The sectoral approach is an aggregation of the manufacturing industries according to technological intensity (R&D expenditure/value added) and based on the Statistical classification of economic activities in the European Community (NACE)  at 2-digit level. The level of R&D intensity served as a criterion of classification of economic sectors into high-technology, medium high-technology, medium low-technology and low-technology industries. Services are mainly aggregated into knowledge-intensive services (KIS) and less knowledge-intensive services (LKIS) based on the share of tertiary educated persons at NACE 2-digit level. The sectoral approach is used for all indicators except data on high-tech trade and patents. Note that due to the revision of the NACE from NACE Rev. 1.1 to NACE Rev. 2 the definition of high-technology industries and knowledge-intensive services has changed in 2008. For high-tech statistics it means that two different definitions (one according NACE Rev. 1.1 and one according NACE Rev. 2) are used in parallel and the data according to both NACE versions are presented in separated tables depending on the data availability. For example as the LFS provides the results both by NACE Rev. 1.1 and NACE Rev. 2, all the table using this source have been duplicated to present the results by NACE Rev. 2 from 2008. For more details, see both definitions of high-tech sectors under Annexes section. Within the sectoral approach, a second classification was created , named Knowledge Intensive Activities KIA) and based on the share of tertiary educated people in each sectors of industries and services according to NACE at 2-digit level and for all EU28 Member States. A threshold was applied to judge sectors as knowledge intensive. In contrast to first sectoral approach mixing two methodologies, one for manufacturing industries and one for services, the KIA classification is based on one methodology for all the sectors of industries and services covering even public sector activities. The aggregations in use are Total Knowledge Intensive Activities (KIA) and Knowledge Intensive Activities in Business Industries (KIABI). Both classifications are made according to NACE Rev. 1.1 and NACE Rev. 2 at 2- digit level. Note that due to revision of the NACE Rev.1.1 to NACE Rev. 2 the list of Knowledge Intensive Activities has changed as well, the two definitions are used in parallel and the data are shown in two separate tables. NACE Rev.2 collection includes data starting from 2008 reference year. For more details please see the definitions under Annexes section. The product approach: The product approach was created to complement the sectoral approach and it is used for data on high-tech trade. The product list is based on the calculations of R&D intensity by groups of products (R&D expenditure/total sales). The groups classified as high-technology products are aggregated on the basis of the Standard International Trade Classification (SITC). The initial definition was built based on SITC Rev.3 and served to compile the high-tech product aggregates until 2007. With the implementation in 2007 of the new version of SITC Rev.4, the definition of high-tech groups was revised and adapted according to new classification. Starting from 2007 the Eurostat presents the trade data for high-tech groups aggregated based on the SITC Rev.4. . For more details, see definition of high-tech products under Annexes section. High-tech patents: High-tech patentsare defined according to another approach. The groups classified as high-tech patents are aggregated on the basis of the International Patent Classification (IPC 8th edition). Biotechnology patents are also aggregated on the basis of the IPC 8th edition. For more details, see the aggregation list of high-tech and biotechnology patents under Annexes section. The high-tech domain also comprises the sub-domain Venture Capital Investments: data are provided by INVEST Europe (formerly named the European Private Equity and Venture Capital Association EVCA). More details are available in the Eurostat metadata under Venture capital investments. Please note that for paragraphs where no metadata for regional data has been specified, the regional metadata is identical to the metadata provided for the national data.
    • March 2009
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 08 June, 2014
      Select Dataset
      Eurostat Dataset Id:edat_lfso_00t2 General description of the ad hoc modules supplementing the Labour Force Survey (LFS)
    • July 2014
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 28 November, 2015
      Select Dataset
      In 2011, the European Union Labour Force Survey (EU-LFS) included an ad hoc module (AHM) on employment of disabled people. The module consisted of 11 variables dealing with: Health problems and difficulties in basic activities;Limitations in work caused by health problems/difficulties in basic activities;Special assistance needed or used by people with health problems/difficulties in basic activities;Limitation in work because of other reasons. On the basis of how the module was operationalised, the following two main definitions for disability were considered for presenting the results: Disabled persons = People having a basic activity difficulty (such as seeing, hearing, walking, communicating);Disabled persons = People having a work limitation caused by a longstanding health condition and/or a basic activity difficulty. 32 countries have implemented this module: the EU 28 Member States plus Turkey, Iceland, Norway and Switzerland. The Norwegian data are not disseminated because the AHM questionnaire in Norway only partly complies with the Commission Regulation (EU) No 317/2010 and consequently, the data are incomplete and partly comparable. Missing values, don't know and refusal answers are not considered in the calculations. It means the indicators have been worked out on the respondents and validated answers only.
    • March 2009
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 29 November, 2015
      Select Dataset
      The tables presented in the topic of active population cover the total population for 31 countries (for more information on received tables and geographic coverage, see "2001 Census Round - Tables Received" in the Annex at the bottom of the page). The level of completeness of the tables depends largely on the availability of data at the respective national statistical institutes. There are four ways of collecting census data, namely: - the traditional method of using census questionnaires (exhaustive census); - the method of using registers and/or other administrative sources; - a combination of registers and/or other administrative sources and - surveys (complete enumerations or sample surveys). Other methods (other mixed census or micro-census) can be used as well. Details for the method employed by each country are provided in "2001 Census Method" in the Annex at the bottom of the page. In the same table you can find the dates on which the census was carried out in each country.
    • March 2009
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 29 November, 2015
      Select Dataset
      The tables presented in the topic of active population cover the total population for 31 countries (for more information on received tables and geographic coverage, see "2001 Census Round - Tables Received" in the Annex at the bottom of the page). The level of completeness of the tables depends largely on the availability of data at the respective national statistical institutes. There are four ways of collecting census data, namely: - the traditional method of using census questionnaires (exhaustive census); - the method of using registers and/or other administrative sources; - a combination of registers and/or other administrative sources and - surveys (complete enumerations or sample surveys). Other methods (other mixed census or micro-census) can be used as well. Details for the method employed by each country are provided in "2001 Census Method" in the Annex at the bottom of the page. In the same table you can find the dates on which the census was carried out in each country.
    • March 2009
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 31 December, 2015
      Select Dataset
      The tables presented in the topic of active population cover the total population for 31 countries (for more information on received tables and geographic coverage, see "2001 Census Round - Tables Received" in the Annex at the bottom of the page). The level of completeness of the tables depends largely on the availability of data at the respective national statistical institutes. There are four ways of collecting census data, namely: - the traditional method of using census questionnaires (exhaustive census); - the method of using registers and/or other administrative sources; - a combination of registers and/or other administrative sources and - surveys (complete enumerations or sample surveys). Other methods (other mixed census or micro-census) can be used as well. Details for the method employed by each country are provided in "2001 Census Method"in the Annex at the bottom of the page. In the same table you can find the dates on which the census was carried out in each country.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 19 March, 2019
      Select Dataset
      The section 'LFS series - detailed quarterly survey results' reports detailed quarterly results going beyond the EU-LFS main aggregates, which have a separate data domain and some methodological differences. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • April 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 06 April, 2019
      Select Dataset
      The section 'LFS series - detailed quarterly survey results' reports detailed quarterly results going beyond the EU-LFS main aggregates, which have a separate data domain and some methodological differences. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 19 March, 2019
      Select Dataset
      The section 'LFS series - detailed quarterly survey results' reports detailed quarterly results going beyond the EU-LFS main aggregates, which have a separate data domain and some methodological differences. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 February, 2019
      Select Dataset
      The main aim of 2017 ad-hoc module is to provide information on the self-employed and on persons in an ambivalent professional status (at the border between employment and self-employment). The module includes 11 variables, split in 3 sub-modules. Sub-module 1: Economically dependent self-employed The first sub-module aims to measure the degree of economic/organisational dependency of the self-employed, in terms of the number of clients and the percentage of income coming from a client as well as in terms of control over working hours. This sub-module includes 2 variables: MAINCLNT: Economic dependencyWORKORG: Organisational dependencySub-module 2: Working conditions for self-employed The aim of the second sub-module is to investigate the working conditions of the self-employed, like working with partners or using employees. It also collects factors that motivated or forced a person to become self-employed, as well as the main difficulty they face working as self-employed. This sub-module includes 5 variables: REASSE: Main reason for becoming self-employed               SEDIFFIC: Main difficulty as self-employed                         REASNOEM: Main reason for not having employees                        BPARTNER:  Working with business partners                                    PLANEMPL:  Planning hiring of employees or subcontracting           Sub-module 3: Comparing employees and self-employed The third sub-module targets the comparison between self-employed, employees and family workers in terms of job satisfaction and autonomy. It also gathers information on the preferred professional status. This sub-module includes 4 variables: JBSATISFQ:  Job satisfaction                                                AUTONOMY: Job autonomy                                                PREFSTAP: Preferred professional status in the main job      OBSTACSE: Main reason for not becoming self-employed  Detailed information on the relevant methodology for the ad-hoc module (including the Commission regulation and explanatory notes) as well as documentation from each participating country (national questionnaires and interviewers instructions) can be found on EU-LFS (Statistics Explained) - Ad-hoc modules.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 February, 2019
      Select Dataset
      The main aim of 2017 ad-hoc module is to provide information on the self-employed and on persons in an ambivalent professional status (at the border between employment and self-employment). The module includes 11 variables, split in 3 sub-modules. Sub-module 1: Economically dependent self-employed The first sub-module aims to measure the degree of economic/organisational dependency of the self-employed, in terms of the number of clients and the percentage of income coming from a client as well as in terms of control over working hours. This sub-module includes 2 variables: MAINCLNT: Economic dependencyWORKORG: Organisational dependencySub-module 2: Working conditions for self-employed The aim of the second sub-module is to investigate the working conditions of the self-employed, like working with partners or using employees. It also collects factors that motivated or forced a person to become self-employed, as well as the main difficulty they face working as self-employed. This sub-module includes 5 variables: REASSE: Main reason for becoming self-employed               SEDIFFIC: Main difficulty as self-employed                         REASNOEM: Main reason for not having employees                        BPARTNER:  Working with business partners                                    PLANEMPL:  Planning hiring of employees or subcontracting           Sub-module 3: Comparing employees and self-employed The third sub-module targets the comparison between self-employed, employees and family workers in terms of job satisfaction and autonomy. It also gathers information on the preferred professional status. This sub-module includes 4 variables: JBSATISFQ:  Job satisfaction                                                AUTONOMY: Job autonomy                                                PREFSTAP: Preferred professional status in the main job      OBSTACSE: Main reason for not becoming self-employed  Detailed information on the relevant methodology for the ad-hoc module (including the Commission regulation and explanatory notes) as well as documentation from each participating country (national questionnaires and interviewers instructions) can be found on EU-LFS (Statistics Explained) - Ad-hoc modules.
    • April 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 06 April, 2019
      Select Dataset
      The section 'LFS series - detailed quarterly survey results' reports detailed quarterly results going beyond the EU-LFS main aggregates, which have a separate data domain and some methodological differences. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 March, 2019
      Select Dataset
      The section 'LFS series - detailed quarterly survey results' reports detailed quarterly results going beyond the EU-LFS main aggregates, which have a separate data domain and some methodological differences. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • April 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 06 April, 2019
      Select Dataset
      The section 'LFS series - detailed quarterly survey results' reports detailed quarterly results going beyond the EU-LFS main aggregates, which have a separate data domain and some methodological differences. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 February, 2019
      Select Dataset
      The main aim of 2017 ad-hoc module is to provide information on the self-employed and on persons in an ambivalent professional status (at the border between employment and self-employment). The module includes 11 variables, split in 3 sub-modules. Sub-module 1: Economically dependent self-employed The first sub-module aims to measure the degree of economic/organisational dependency of the self-employed, in terms of the number of clients and the percentage of income coming from a client as well as in terms of control over working hours. This sub-module includes 2 variables: MAINCLNT: Economic dependencyWORKORG: Organisational dependencySub-module 2: Working conditions for self-employed The aim of the second sub-module is to investigate the working conditions of the self-employed, like working with partners or using employees. It also collects factors that motivated or forced a person to become self-employed, as well as the main difficulty they face working as self-employed. This sub-module includes 5 variables: REASSE: Main reason for becoming self-employed               SEDIFFIC: Main difficulty as self-employed                         REASNOEM: Main reason for not having employees                        BPARTNER:  Working with business partners                                    PLANEMPL:  Planning hiring of employees or subcontracting           Sub-module 3: Comparing employees and self-employed The third sub-module targets the comparison between self-employed, employees and family workers in terms of job satisfaction and autonomy. It also gathers information on the preferred professional status. This sub-module includes 4 variables: JBSATISFQ:  Job satisfaction                                                AUTONOMY: Job autonomy                                                PREFSTAP: Preferred professional status in the main job      OBSTACSE: Main reason for not becoming self-employed  Detailed information on the relevant methodology for the ad-hoc module (including the Commission regulation and explanatory notes) as well as documentation from each participating country (national questionnaires and interviewers instructions) can be found on EU-LFS (Statistics Explained) - Ad-hoc modules.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 February, 2019
      Select Dataset
      The main aim of 2017 ad-hoc module is to provide information on the self-employed and on persons in an ambivalent professional status (at the border between employment and self-employment). The module includes 11 variables, split in 3 sub-modules. Sub-module 1: Economically dependent self-employed The first sub-module aims to measure the degree of economic/organisational dependency of the self-employed, in terms of the number of clients and the percentage of income coming from a client as well as in terms of control over working hours. This sub-module includes 2 variables: MAINCLNT: Economic dependencyWORKORG: Organisational dependencySub-module 2: Working conditions for self-employed The aim of the second sub-module is to investigate the working conditions of the self-employed, like working with partners or using employees. It also collects factors that motivated or forced a person to become self-employed, as well as the main difficulty they face working as self-employed. This sub-module includes 5 variables: REASSE: Main reason for becoming self-employed               SEDIFFIC: Main difficulty as self-employed                         REASNOEM: Main reason for not having employees                        BPARTNER:  Working with business partners                                    PLANEMPL:  Planning hiring of employees or subcontracting           Sub-module 3: Comparing employees and self-employed The third sub-module targets the comparison between self-employed, employees and family workers in terms of job satisfaction and autonomy. It also gathers information on the preferred professional status. This sub-module includes 4 variables: JBSATISFQ:  Job satisfaction                                                AUTONOMY: Job autonomy                                                PREFSTAP: Preferred professional status in the main job      OBSTACSE: Main reason for not becoming self-employed  Detailed information on the relevant methodology for the ad-hoc module (including the Commission regulation and explanatory notes) as well as documentation from each participating country (national questionnaires and interviewers instructions) can be found on EU-LFS (Statistics Explained) - Ad-hoc modules.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 February, 2019
      Select Dataset
      The main aim of 2017 ad-hoc module is to provide information on the self-employed and on persons in an ambivalent professional status (at the border between employment and self-employment). The module includes 11 variables, split in 3 sub-modules. Sub-module 1: Economically dependent self-employed The first sub-module aims to measure the degree of economic/organisational dependency of the self-employed, in terms of the number of clients and the percentage of income coming from a client as well as in terms of control over working hours. This sub-module includes 2 variables: MAINCLNT: Economic dependencyWORKORG: Organisational dependencySub-module 2: Working conditions for self-employed The aim of the second sub-module is to investigate the working conditions of the self-employed, like working with partners or using employees. It also collects factors that motivated or forced a person to become self-employed, as well as the main difficulty they face working as self-employed. This sub-module includes 5 variables: REASSE: Main reason for becoming self-employed               SEDIFFIC: Main difficulty as self-employed                         REASNOEM: Main reason for not having employees                        BPARTNER:  Working with business partners                                    PLANEMPL:  Planning hiring of employees or subcontracting           Sub-module 3: Comparing employees and self-employed The third sub-module targets the comparison between self-employed, employees and family workers in terms of job satisfaction and autonomy. It also gathers information on the preferred professional status. This sub-module includes 4 variables: JBSATISFQ:  Job satisfaction                                                AUTONOMY: Job autonomy                                                PREFSTAP: Preferred professional status in the main job      OBSTACSE: Main reason for not becoming self-employed  Detailed information on the relevant methodology for the ad-hoc module (including the Commission regulation and explanatory notes) as well as documentation from each participating country (national questionnaires and interviewers instructions) can be found on EU-LFS (Statistics Explained) - Ad-hoc modules.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 February, 2019
      Select Dataset
      The main aim of 2017 ad-hoc module is to provide information on the self-employed and on persons in an ambivalent professional status (at the border between employment and self-employment). The module includes 11 variables, split in 3 sub-modules. Sub-module 1: Economically dependent self-employed The first sub-module aims to measure the degree of economic/organisational dependency of the self-employed, in terms of the number of clients and the percentage of income coming from a client as well as in terms of control over working hours. This sub-module includes 2 variables: MAINCLNT: Economic dependencyWORKORG: Organisational dependencySub-module 2: Working conditions for self-employed The aim of the second sub-module is to investigate the working conditions of the self-employed, like working with partners or using employees. It also collects factors that motivated or forced a person to become self-employed, as well as the main difficulty they face working as self-employed. This sub-module includes 5 variables: REASSE: Main reason for becoming self-employed               SEDIFFIC: Main difficulty as self-employed                         REASNOEM: Main reason for not having employees                        BPARTNER:  Working with business partners                                    PLANEMPL:  Planning hiring of employees or subcontracting           Sub-module 3: Comparing employees and self-employed The third sub-module targets the comparison between self-employed, employees and family workers in terms of job satisfaction and autonomy. It also gathers information on the preferred professional status. This sub-module includes 4 variables: JBSATISFQ:  Job satisfaction                                                AUTONOMY: Job autonomy                                                PREFSTAP: Preferred professional status in the main job      OBSTACSE: Main reason for not becoming self-employed  Detailed information on the relevant methodology for the ad-hoc module (including the Commission regulation and explanatory notes) as well as documentation from each participating country (national questionnaires and interviewers instructions) can be found on EU-LFS (Statistics Explained) - Ad-hoc modules.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 February, 2019
      Select Dataset
      The main aim of 2017 ad-hoc module is to provide information on the self-employed and on persons in an ambivalent professional status (at the border between employment and self-employment). The module includes 11 variables, split in 3 sub-modules. Sub-module 1: Economically dependent self-employed The first sub-module aims to measure the degree of economic/organisational dependency of the self-employed, in terms of the number of clients and the percentage of income coming from a client as well as in terms of control over working hours. This sub-module includes 2 variables: MAINCLNT: Economic dependencyWORKORG: Organisational dependencySub-module 2: Working conditions for self-employed The aim of the second sub-module is to investigate the working conditions of the self-employed, like working with partners or using employees. It also collects factors that motivated or forced a person to become self-employed, as well as the main difficulty they face working as self-employed. This sub-module includes 5 variables: REASSE: Main reason for becoming self-employed               SEDIFFIC: Main difficulty as self-employed                         REASNOEM: Main reason for not having employees                        BPARTNER:  Working with business partners                                    PLANEMPL:  Planning hiring of employees or subcontracting           Sub-module 3: Comparing employees and self-employed The third sub-module targets the comparison between self-employed, employees and family workers in terms of job satisfaction and autonomy. It also gathers information on the preferred professional status. This sub-module includes 4 variables: JBSATISFQ:  Job satisfaction                                                AUTONOMY: Job autonomy                                                PREFSTAP: Preferred professional status in the main job      OBSTACSE: Main reason for not becoming self-employed  Detailed information on the relevant methodology for the ad-hoc module (including the Commission regulation and explanatory notes) as well as documentation from each participating country (national questionnaires and interviewers instructions) can be found on EU-LFS (Statistics Explained) - Ad-hoc modules.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 February, 2019
      Select Dataset
      The main aim of 2017 ad-hoc module is to provide information on the self-employed and on persons in an ambivalent professional status (at the border between employment and self-employment). The module includes 11 variables, split in 3 sub-modules. Sub-module 1: Economically dependent self-employed The first sub-module aims to measure the degree of economic/organisational dependency of the self-employed, in terms of the number of clients and the percentage of income coming from a client as well as in terms of control over working hours. This sub-module includes 2 variables: MAINCLNT: Economic dependencyWORKORG: Organisational dependencySub-module 2: Working conditions for self-employed The aim of the second sub-module is to investigate the working conditions of the self-employed, like working with partners or using employees. It also collects factors that motivated or forced a person to become self-employed, as well as the main difficulty they face working as self-employed. This sub-module includes 5 variables: REASSE: Main reason for becoming self-employed               SEDIFFIC: Main difficulty as self-employed                         REASNOEM: Main reason for not having employees                        BPARTNER:  Working with business partners                                    PLANEMPL:  Planning hiring of employees or subcontracting           Sub-module 3: Comparing employees and self-employed The third sub-module targets the comparison between self-employed, employees and family workers in terms of job satisfaction and autonomy. It also gathers information on the preferred professional status. This sub-module includes 4 variables: JBSATISFQ:  Job satisfaction                                                AUTONOMY: Job autonomy                                                PREFSTAP: Preferred professional status in the main job      OBSTACSE: Main reason for not becoming self-employed  Detailed information on the relevant methodology for the ad-hoc module (including the Commission regulation and explanatory notes) as well as documentation from each participating country (national questionnaires and interviewers instructions) can be found on EU-LFS (Statistics Explained) - Ad-hoc modules.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 February, 2019
      Select Dataset
      The main aim of 2017 ad-hoc module is to provide information on the self-employed and on persons in an ambivalent professional status (at the border between employment and self-employment). The module includes 11 variables, split in 3 sub-modules. Sub-module 1: Economically dependent self-employed The first sub-module aims to measure the degree of economic/organisational dependency of the self-employed, in terms of the number of clients and the percentage of income coming from a client as well as in terms of control over working hours. This sub-module includes 2 variables: MAINCLNT: Economic dependencyWORKORG: Organisational dependencySub-module 2: Working conditions for self-employed The aim of the second sub-module is to investigate the working conditions of the self-employed, like working with partners or using employees. It also collects factors that motivated or forced a person to become self-employed, as well as the main difficulty they face working as self-employed. This sub-module includes 5 variables: REASSE: Main reason for becoming self-employed               SEDIFFIC: Main difficulty as self-employed                         REASNOEM: Main reason for not having employees                        BPARTNER:  Working with business partners                                    PLANEMPL:  Planning hiring of employees or subcontracting           Sub-module 3: Comparing employees and self-employed The third sub-module targets the comparison between self-employed, employees and family workers in terms of job satisfaction and autonomy. It also gathers information on the preferred professional status. This sub-module includes 4 variables: JBSATISFQ:  Job satisfaction                                                AUTONOMY: Job autonomy                                                PREFSTAP: Preferred professional status in the main job      OBSTACSE: Main reason for not becoming self-employed  Detailed information on the relevant methodology for the ad-hoc module (including the Commission regulation and explanatory notes) as well as documentation from each participating country (national questionnaires and interviewers instructions) can be found on EU-LFS (Statistics Explained) - Ad-hoc modules.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 February, 2019
      Select Dataset
      The main aim of 2017 ad-hoc module is to provide information on the self-employed and on persons in an ambivalent professional status (at the border between employment and self-employment). The module includes 11 variables, split in 3 sub-modules. Sub-module 1: Economically dependent self-employed The first sub-module aims to measure the degree of economic/organisational dependency of the self-employed, in terms of the number of clients and the percentage of income coming from a client as well as in terms of control over working hours. This sub-module includes 2 variables: MAINCLNT: Economic dependencyWORKORG: Organisational dependencySub-module 2: Working conditions for self-employed The aim of the second sub-module is to investigate the working conditions of the self-employed, like working with partners or using employees. It also collects factors that motivated or forced a person to become self-employed, as well as the main difficulty they face working as self-employed. This sub-module includes 5 variables: REASSE: Main reason for becoming self-employed               SEDIFFIC: Main difficulty as self-employed                         REASNOEM: Main reason for not having employees                        BPARTNER:  Working with business partners                                    PLANEMPL:  Planning hiring of employees or subcontracting           Sub-module 3: Comparing employees and self-employed The third sub-module targets the comparison between self-employed, employees and family workers in terms of job satisfaction and autonomy. It also gathers information on the preferred professional status. This sub-module includes 4 variables: JBSATISFQ:  Job satisfaction                                                AUTONOMY: Job autonomy                                                PREFSTAP: Preferred professional status in the main job      OBSTACSE: Main reason for not becoming self-employed  Detailed information on the relevant methodology for the ad-hoc module (including the Commission regulation and explanatory notes) as well as documentation from each participating country (national questionnaires and interviewers instructions) can be found on EU-LFS (Statistics Explained) - Ad-hoc modules.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 February, 2019
      Select Dataset
      The main aim of 2017 ad-hoc module is to provide information on the self-employed and on persons in an ambivalent professional status (at the border between employment and self-employment). The module includes 11 variables, split in 3 sub-modules. Sub-module 1: Economically dependent self-employed The first sub-module aims to measure the degree of economic/organisational dependency of the self-employed, in terms of the number of clients and the percentage of income coming from a client as well as in terms of control over working hours. This sub-module includes 2 variables: MAINCLNT: Economic dependencyWORKORG: Organisational dependencySub-module 2: Working conditions for self-employed The aim of the second sub-module is to investigate the working conditions of the self-employed, like working with partners or using employees. It also collects factors that motivated or forced a person to become self-employed, as well as the main difficulty they face working as self-employed. This sub-module includes 5 variables: REASSE: Main reason for becoming self-employed               SEDIFFIC: Main difficulty as self-employed                         REASNOEM: Main reason for not having employees                        BPARTNER:  Working with business partners                                    PLANEMPL:  Planning hiring of employees or subcontracting           Sub-module 3: Comparing employees and self-employed The third sub-module targets the comparison between self-employed, employees and family workers in terms of job satisfaction and autonomy. It also gathers information on the preferred professional status. This sub-module includes 4 variables: JBSATISFQ:  Job satisfaction                                                AUTONOMY: Job autonomy                                                PREFSTAP: Preferred professional status in the main job      OBSTACSE: Main reason for not becoming self-employed  Detailed information on the relevant methodology for the ad-hoc module (including the Commission regulation and explanatory notes) as well as documentation from each participating country (national questionnaires and interviewers instructions) can be found on EU-LFS (Statistics Explained) - Ad-hoc modules.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 February, 2019
      Select Dataset
      The main aim of 2017 ad-hoc module is to provide information on the self-employed and on persons in an ambivalent professional status (at the border between employment and self-employment). The module includes 11 variables, split in 3 sub-modules. Sub-module 1: Economically dependent self-employed The first sub-module aims to measure the degree of economic/organisational dependency of the self-employed, in terms of the number of clients and the percentage of income coming from a client as well as in terms of control over working hours. This sub-module includes 2 variables: MAINCLNT: Economic dependencyWORKORG: Organisational dependencySub-module 2: Working conditions for self-employed The aim of the second sub-module is to investigate the working conditions of the self-employed, like working with partners or using employees. It also collects factors that motivated or forced a person to become self-employed, as well as the main difficulty they face working as self-employed. This sub-module includes 5 variables: REASSE: Main reason for becoming self-employed               SEDIFFIC: Main difficulty as self-employed                         REASNOEM: Main reason for not having employees                        BPARTNER:  Working with business partners                                    PLANEMPL:  Planning hiring of employees or subcontracting           Sub-module 3: Comparing employees and self-employed The third sub-module targets the comparison between self-employed, employees and family workers in terms of job satisfaction and autonomy. It also gathers information on the preferred professional status. This sub-module includes 4 variables: JBSATISFQ:  Job satisfaction                                                AUTONOMY: Job autonomy                                                PREFSTAP: Preferred professional status in the main job      OBSTACSE: Main reason for not becoming self-employed  Detailed information on the relevant methodology for the ad-hoc module (including the Commission regulation and explanatory notes) as well as documentation from each participating country (national questionnaires and interviewers instructions) can be found on EU-LFS (Statistics Explained) - Ad-hoc modules.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 February, 2019
      Select Dataset
      The main aim of 2017 ad-hoc module is to provide information on the self-employed and on persons in an ambivalent professional status (at the border between employment and self-employment). The module includes 11 variables, split in 3 sub-modules. Sub-module 1: Economically dependent self-employed The first sub-module aims to measure the degree of economic/organisational dependency of the self-employed, in terms of the number of clients and the percentage of income coming from a client as well as in terms of control over working hours. This sub-module includes 2 variables: MAINCLNT: Economic dependencyWORKORG: Organisational dependencySub-module 2: Working conditions for self-employed The aim of the second sub-module is to investigate the working conditions of the self-employed, like working with partners or using employees. It also collects factors that motivated or forced a person to become self-employed, as well as the main difficulty they face working as self-employed. This sub-module includes 5 variables: REASSE: Main reason for becoming self-employed               SEDIFFIC: Main difficulty as self-employed                         REASNOEM: Main reason for not having employees                        BPARTNER:  Working with business partners                                    PLANEMPL:  Planning hiring of employees or subcontracting           Sub-module 3: Comparing employees and self-employed The third sub-module targets the comparison between self-employed, employees and family workers in terms of job satisfaction and autonomy. It also gathers information on the preferred professional status. This sub-module includes 4 variables: JBSATISFQ:  Job satisfaction                                                AUTONOMY: Job autonomy                                                PREFSTAP: Preferred professional status in the main job      OBSTACSE: Main reason for not becoming self-employed  Detailed information on the relevant methodology for the ad-hoc module (including the Commission regulation and explanatory notes) as well as documentation from each participating country (national questionnaires and interviewers instructions) can be found on EU-LFS (Statistics Explained) - Ad-hoc modules.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 February, 2019
      Select Dataset
      The main aim of 2017 ad-hoc module is to provide information on the self-employed and on persons in an ambivalent professional status (at the border between employment and self-employment). The module includes 11 variables, split in 3 sub-modules. Sub-module 1: Economically dependent self-employed The first sub-module aims to measure the degree of economic/organisational dependency of the self-employed, in terms of the number of clients and the percentage of income coming from a client as well as in terms of control over working hours. This sub-module includes 2 variables: MAINCLNT: Economic dependencyWORKORG: Organisational dependencySub-module 2: Working conditions for self-employed The aim of the second sub-module is to investigate the working conditions of the self-employed, like working with partners or using employees. It also collects factors that motivated or forced a person to become self-employed, as well as the main difficulty they face working as self-employed. This sub-module includes 5 variables: REASSE: Main reason for becoming self-employed               SEDIFFIC: Main difficulty as self-employed                         REASNOEM: Main reason for not having employees                        BPARTNER:  Working with business partners                                    PLANEMPL:  Planning hiring of employees or subcontracting           Sub-module 3: Comparing employees and self-employed The third sub-module targets the comparison between self-employed, employees and family workers in terms of job satisfaction and autonomy. It also gathers information on the preferred professional status. This sub-module includes 4 variables: JBSATISFQ:  Job satisfaction                                                AUTONOMY: Job autonomy                                                PREFSTAP: Preferred professional status in the main job      OBSTACSE: Main reason for not becoming self-employed  Detailed information on the relevant methodology for the ad-hoc module (including the Commission regulation and explanatory notes) as well as documentation from each participating country (national questionnaires and interviewers instructions) can be found on EU-LFS (Statistics Explained) - Ad-hoc modules.
    • March 2009
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 26 May, 2014
      Select Dataset
      Eurostat Dataset Id:cens_01reisco The tables presented in the topic of educational level cover the total population for 31 countries (for more information on received tables and geographic coverage, see "2001 Census Round - Tables Received" in the Annex at the bottom of the page). The level of completeness of the tables depends largely on the availability of data at the respective national statistical institutes. There are four ways of collecting census data, namely: - the traditional method of using census questionnaires (exhaustive census); - the method of using registers and/or other administrative sources; - a combination of registers and/or other administrative sources and - surveys (complete enumerations or sample surveys). Other methods (other mixed census or micro-census) can be used as well. Details for the method employed by each country are provided in "2001 Census Method"in the Annex at the bottom of the page. In the same table you can find the dates on which the census was carried out in each country.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 February, 2019
      Select Dataset
      The ad-hoc module "young people on the labour market" provides supplementary information on the correlation between work-based learning and labour market outcomes.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 February, 2019
      Select Dataset
      The ad-hoc module "young people on the labour market" provides supplementary information on the correlation between work-based learning and labour market outcomes.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 February, 2019
      Select Dataset
      The ad-hoc module "young people on the labour market" provides supplementary information on the correlation between work-based learning and labour market outcomes.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 February, 2019
      Select Dataset
      The main aim of 2017 ad-hoc module is to provide information on the self-employed and on persons in an ambivalent professional status (at the border between employment and self-employment). The module includes 11 variables, split in 3 sub-modules. Sub-module 1: Economically dependent self-employed The first sub-module aims to measure the degree of economic/organisational dependency of the self-employed, in terms of the number of clients and the percentage of income coming from a client as well as in terms of control over working hours. This sub-module includes 2 variables: MAINCLNT: Economic dependencyWORKORG: Organisational dependencySub-module 2: Working conditions for self-employed The aim of the second sub-module is to investigate the working conditions of the self-employed, like working with partners or using employees. It also collects factors that motivated or forced a person to become self-employed, as well as the main difficulty they face working as self-employed. This sub-module includes 5 variables: REASSE: Main reason for becoming self-employed               SEDIFFIC: Main difficulty as self-employed                         REASNOEM: Main reason for not having employees                        BPARTNER:  Working with business partners                                    PLANEMPL:  Planning hiring of employees or subcontracting           Sub-module 3: Comparing employees and self-employed The third sub-module targets the comparison between self-employed, employees and family workers in terms of job satisfaction and autonomy. It also gathers information on the preferred professional status. This sub-module includes 4 variables: JBSATISFQ:  Job satisfaction                                                AUTONOMY: Job autonomy                                                PREFSTAP: Preferred professional status in the main job      OBSTACSE: Main reason for not becoming self-employed  Detailed information on the relevant methodology for the ad-hoc module (including the Commission regulation and explanatory notes) as well as documentation from each participating country (national questionnaires and interviewers instructions) can be found on EU-LFS (Statistics Explained) - Ad-hoc modules.
    • April 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 06 April, 2019
      Select Dataset
      The section 'LFS series - detailed quarterly survey results' reports detailed quarterly results going beyond the EU-LFS main aggregates, which have a separate data domain and some methodological differences. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 19 March, 2019
      Select Dataset
    • April 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 08 April, 2019
      Select Dataset
      The section 'LFS series - detailed quarterly survey results' reports detailed quarterly results going beyond the EU-LFS main aggregates, which have a separate data domain and some methodological differences. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 19 March, 2019
      Select Dataset
      The section 'LFS series - detailed annual survey results' reports annual results from the EU-LFS. While LFS is a quarterly survey, it is also possible to produce annual results. There are several ways of doing it, see section '18.5 Data compilation' below for details. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self-employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, population in employment working during unsocial hours, working time, total unemployment, inactivity and quality of employment. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metadata. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • April 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 10 April, 2019
      Select Dataset
      The section 'LFS series - detailed quarterly survey results' reports detailed quarterly results going beyond the EU-LFS main aggregates, which have a separate data domain and some methodological differences. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 22 March, 2019
      Select Dataset
      The section 'LFS series - detailed annual survey results' reports annual results from the EU-LFS. While LFS is a quarterly survey, it is also possible to produce annual results. There are several ways of doing it, see section '18.5 Data compilation' below for details. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self-employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, population in employment working during unsocial hours, working time, total unemployment, inactivity and quality of employment. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metadata. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 February, 2019
      Select Dataset
      The main aim of 2017 ad-hoc module is to provide information on the self-employed and on persons in an ambivalent professional status (at the border between employment and self-employment). The module includes 11 variables, split in 3 sub-modules. Sub-module 1: Economically dependent self-employed The first sub-module aims to measure the degree of economic/organisational dependency of the self-employed, in terms of the number of clients and the percentage of income coming from a client as well as in terms of control over working hours. This sub-module includes 2 variables: MAINCLNT: Economic dependencyWORKORG: Organisational dependencySub-module 2: Working conditions for self-employed The aim of the second sub-module is to investigate the working conditions of the self-employed, like working with partners or using employees. It also collects factors that motivated or forced a person to become self-employed, as well as the main difficulty they face working as self-employed. This sub-module includes 5 variables: REASSE: Main reason for becoming self-employed               SEDIFFIC: Main difficulty as self-employed                         REASNOEM: Main reason for not having employees                        BPARTNER:  Working with business partners                                    PLANEMPL:  Planning hiring of employees or subcontracting           Sub-module 3: Comparing employees and self-employed The third sub-module targets the comparison between self-employed, employees and family workers in terms of job satisfaction and autonomy. It also gathers information on the preferred professional status. This sub-module includes 4 variables: JBSATISFQ:  Job satisfaction                                                AUTONOMY: Job autonomy                                                PREFSTAP: Preferred professional status in the main job      OBSTACSE: Main reason for not becoming self-employed  Detailed information on the relevant methodology for the ad-hoc module (including the Commission regulation and explanatory notes) as well as documentation from each participating country (national questionnaires and interviewers instructions) can be found on EU-LFS (Statistics Explained) - Ad-hoc modules.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 March, 2019
      Select Dataset
      The indicator, 'employed persons with a second job' refers only to persons with more than one job at the same time. Consequently, persons having changed job during the reference week are not covered.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 February, 2019
      Select Dataset
      The ad-hoc module "young people on the labour market" provides supplementary information on the correlation between work-based learning and labour market outcomes.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 17 April, 2019
      Select Dataset
      The section 'LFS series - detailed annual survey results' reports annual results from the EU-LFS. While LFS is a quarterly survey, it is also possible to produce annual results. There are several ways of doing it, see section '20.5 Data compilation' below for details. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 16 April, 2019
      Select Dataset
      The section 'LFS series - detailed annual survey results' reports annual results from the EU-LFS. While LFS is a quarterly survey, it is also possible to produce annual results. There are several ways of doing it, see section '20.5 Data compilation' below for details. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 April, 2019
      Select Dataset
      The section 'LFS series - detailed annual survey results' reports annual results from the EU-LFS. While LFS is a quarterly survey, it is also possible to produce annual results. There are several ways of doing it, see section '20.5 Data compilation' below for details. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 22 February, 2019
      Select Dataset
      The section 'LFS series - detailed annual survey results' reports annual results from the EU-LFS. While LFS is a quarterly survey, it is also possible to produce annual results. There are several ways of doing it, see section '20.5 Data compilation' below for details. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 April, 2019
      Select Dataset
      The section 'LFS series - detailed annual survey results' reports annual results from the EU-LFS. While LFS is a quarterly survey, it is also possible to produce annual results. There are several ways of doing it, see section '20.5 Data compilation' below for details. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 February, 2019
      Select Dataset
      The ad-hoc module "young people on the labour market" provides supplementary information on the correlation between work-based learning and labour market outcomes.
    • March 2014
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 05 June, 2014
      Select Dataset
      Eurostat Dataset Id:lfso_06yrspisco Results from the 2006 LFS (Labour Force Survey) ad hoc module on 'transition form work into retirement'.
    • March 2014
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 28 November, 2015
      Select Dataset
      Results from the 2006 LFS (Labour Force Survey) ad hoc module on 'transition form work into retirement'. The aim of the ad hoc module was to know how the transition at the end of the career towards full retirement is expected to take place, takes place or took place: • plans for transitions/past transitions towards full retirement • plans for exit from work Another aim was to know which factors would be/were at play in determining the exit from work, and which factors could make/could have made persons postpone the exit from work: • working conditions factors (health and safety at the workplace, flexible working time arrangements …) • other factors linked to work (training/obsolescence of skills …) • financial factors (financial incentives to remain at work or to exit) • personal factors (health, family reasons …).
    • April 2014
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 28 November, 2015
      Select Dataset
      Introduction Key available data are presented on population and housing based on the decennial census rounds 1981-2011. Separate tables cover: - Population by sex and major age group - Population by educational attainment - Population by activity status - Population by citizenship - Households by household size - Occupied conventional dwellings by number of rooms Data availability varies between census rounds. The countries covered by the data vary between different census rounds. There are also differences in definitions and disaggregations between countries and between census rounds.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 March, 2019
      Select Dataset
      The section 'LFS series - detailed annual survey results' reports annual results from the EU-LFS. While LFS is a quarterly survey, it is also possible to produce annual results. There are several ways of doing it, see section '18.5 Data compilation' below for details. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metadata. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 March, 2019
      Select Dataset
      The section 'LFS series - detailed annual survey results' reports annual results from the EU-LFS. While LFS is a quarterly survey, it is also possible to produce annual results. There are several ways of doing it, see section '18.5 Data compilation' below for details. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metadata. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • June 2014
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 29 November, 2015
      Select Dataset
      Data given in this domain are collected on a yearly basis by the National Statistical Institutes or Ministries and are based on the annual Eurostat Model Questionnaires on ICT (Information and Communication Technologies) usage and e-commerce in enterprises. Large part of the data collected are used in the context of the 2011 - 2015 benchmarking framework (endorsed by i2010 High Level Group in November 2009) for the Digital Agenda Scoreboard, Europe's strategy for a flourishing digital economy by 2020. This conceptual framework follows the i2010 Benchmarking Framework which itself followed-up the eEurope 2005 Action Plan. The aim of the European ICT usage surveys is to collect and disseminate harmonised and comparable information on the use of Information and Communication Technologies in enterprises and e-commerce at European level. Coverage: The characteristics to be provided are drawn from the following list of subjects: - ICT systems and their usage in enterprises, - use of the Internet and other electronic networks by enterprises, - e-commerce, - e-business processes and organisational aspects, - use of ICT by enterprises to exchange information and services with governments and public administrations (e-government), - ICT competence in the enterprise and the need for ICT skills, - barriers to the use of ICT, the Internet and other electronic networks, e-commerce and e-business processes, - ICT expenditure and investment, - ICT security and trust, - use of ICT and its impact on the environment (Green ICT), - access to and use of the Internet and other network technologies for connecting objects and devices (Internet of Things), - access to and use of technologies providing the ability to connect to the Internet or other networks from anywhere at any time (ubiquitous connectivity). Breakdowns: - by size class, - by NACE categories, - by region (until 2010)
    • June 2014
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 29 November, 2015
      Select Dataset
      Data given in this domain are collected on a yearly basis by the National Statistical Institutes or Ministries and are based on the annual Eurostat Model Questionnaires on ICT (Information and Communication Technologies) usage and e-commerce in enterprises. Large part of the data collected are used in the context of the 2011 - 2015 benchmarking framework (endorsed by i2010 High Level Group in November 2009) for the Digital Agenda Scoreboard, Europe's strategy for a flourishing digital economy by 2020. This conceptual framework follows the i2010 Benchmarking Framework which itself followed-up the eEurope 2005 Action Plan. The aim of the European ICT usage surveys is to collect and disseminate harmonised and comparable information on the use of Information and Communication Technologies in enterprises and e-commerce at European level. Coverage: The characteristics to be provided are drawn from the following list of subjects: - ICT systems and their usage in enterprises, - use of the Internet and other electronic networks by enterprises, - e-commerce, - e-business processes and organisational aspects, - use of ICT by enterprises to exchange information and services with governments and public administrations (e-government), - ICT competence in the enterprise and the need for ICT skills, - barriers to the use of ICT, the Internet and other electronic networks, e-commerce and e-business processes, - ICT expenditure and investment, - ICT security and trust, - use of ICT and its impact on the environment (Green ICT), - access to and use of the Internet and other network technologies for connecting objects and devices (Internet of Things), - access to and use of technologies providing the ability to connect to the Internet or other networks from anywhere at any time (ubiquitous connectivity). Breakdowns: - by size class, - by NACE categories, - by region (until 2010)
    • May 2016
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 20 May, 2016
      Select Dataset
      Data given in this domain are collected on a yearly basis by the National Statistical Institutes or Ministries and are based on the annual Eurostat Model Questionnaires on ICT (Information and Communication Technologies) usage and e-commerce in enterprises. Large part of the data collected are used in the context of the 2011 - 2015 benchmarking framework (endorsed by i2010 High Level Group in November 2009) for the Digital Agenda Scoreboard, Europe's strategy for a flourishing digital economy by 2020. This conceptual framework follows the i2010 Benchmarking Framework which itself followed-up the eEurope 2005 Action Plan. The aim of the European ICT usage surveys is to collect and disseminate harmonised and comparable information on the use of Information and Communication Technologies in enterprises and e-commerce at European level. Coverage: The characteristics to be provided are drawn from the following list of subjects: - ICT systems and their usage in enterprises, - use of the Internet and other electronic networks by enterprises, - e-commerce, - e-business processes and organisational aspects, - use of ICT by enterprises to exchange information and services with governments and public administrations (e-government), - ICT competence in the enterprise and the need for ICT skills, - barriers to the use of ICT, the Internet and other electronic networks, e-commerce and e-business processes, - ICT expenditure and investment, - ICT security and trust, - use of ICT and its impact on the environment (Green ICT), - access to and use of the Internet and other network technologies for connecting objects and devices (Internet of Things), - access to and use of technologies providing the ability to connect to the Internet or other networks from anywhere at any time (ubiquitous connectivity). Breakdowns: - by size class, - by NACE categories, - by region (until 2010)
    • March 2009
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 29 November, 2015
      Select Dataset
      Data given in this domain are collected on a yearly basis by the National Statistical Institutes or Ministries and are based on the annual Eurostat Model Questionnaires on ICT (Information and Communication Technologies) usage and e-commerce in enterprises. Large part of the data collected are used in the context of the 2011 - 2015 benchmarking framework (endorsed by i2010 High Level Group in November 2009) for the Digital Agenda Scoreboard, Europe's strategy for a flourishing digital economy by 2020. This conceptual framework follows the i2010 Benchmarking Framework which itself followed-up the eEurope 2005 Action Plan. The aim of the European ICT usage surveys is to collect and disseminate harmonised and comparable information on the use of Information and Communication Technologies in enterprises and e-commerce at European level. Coverage: The characteristics to be provided are drawn from the following list of subjects: - ICT systems and their usage in enterprises, - use of the Internet and other electronic networks by enterprises, - e-commerce, - e-business processes and organisational aspects, - use of ICT by enterprises to exchange information and services with governments and public administrations (e-government), - ICT competence in the enterprise and the need for ICT skills, - barriers to the use of ICT, the Internet and other electronic networks, e-commerce and e-business processes, - ICT expenditure and investment, - ICT security and trust, - use of ICT and its impact on the environment (Green ICT), - access to and use of the Internet and other network technologies for connecting objects and devices (Internet of Things), - access to and use of technologies providing the ability to connect to the Internet or other networks from anywhere at any time (ubiquitous connectivity). Breakdowns: - by size class, - by NACE categories, - by region (until 2010)
    • June 2014
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 27 November, 2015
      Select Dataset
      Data given in this domain are collected on a yearly basis by the National Statistical Institutes or Ministries and are based on the annual Eurostat Model Questionnaires on ICT (Information and Communication Technologies) usage and e-commerce in enterprises. Large part of the data collected are used in the context of the 2011 - 2015 benchmarking framework (endorsed by i2010 High Level Group in November 2009) for the Digital Agenda Scoreboard, Europe's strategy for a flourishing digital economy by 2020. This conceptual framework follows the i2010 Benchmarking Framework which itself followed-up the eEurope 2005 Action Plan. The aim of the European ICT usage surveys is to collect and disseminate harmonised and comparable information on the use of Information and Communication Technologies in enterprises and e-commerce at European level. Coverage: The characteristics to be provided are drawn from the following list of subjects: - ICT systems and their usage in enterprises, - use of the Internet and other electronic networks by enterprises, - e-commerce, - e-business processes and organisational aspects, - use of ICT by enterprises to exchange information and services with governments and public administrations (e-government), - ICT competence in the enterprise and the need for ICT skills, - barriers to the use of ICT, the Internet and other electronic networks, e-commerce and e-business processes, - ICT expenditure and investment, - ICT security and trust, - use of ICT and its impact on the environment (Green ICT), - access to and use of the Internet and other network technologies for connecting objects and devices (Internet of Things), - access to and use of technologies providing the ability to connect to the Internet or other networks from anywhere at any time (ubiquitous connectivity). Breakdowns: - by size class, - by NACE categories, - by region (until 2010)
    • May 2016
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 20 May, 2016
      Select Dataset
      Data given in this domain are collected on a yearly basis by the National Statistical Institutes or Ministries and are based on the annual Eurostat Model Questionnaires on ICT (Information and Communication Technologies) usage and e-commerce in enterprises. Large part of the data collected are used in the context of the 2011 - 2015 benchmarking framework (endorsed by i2010 High Level Group in November 2009) for the Digital Agenda Scoreboard, Europe's strategy for a flourishing digital economy by 2020. This conceptual framework follows the i2010 Benchmarking Framework which itself followed-up the eEurope 2005 Action Plan. The aim of the European ICT usage surveys is to collect and disseminate harmonised and comparable information on the use of Information and Communication Technologies in enterprises and e-commerce at European level. Coverage: The characteristics to be provided are drawn from the following list of subjects: - ICT systems and their usage in enterprises, - use of the Internet and other electronic networks by enterprises, - e-commerce, - e-business processes and organisational aspects, - use of ICT by enterprises to exchange information and services with governments and public administrations (e-government), - ICT competence in the enterprise and the need for ICT skills, - barriers to the use of ICT, the Internet and other electronic networks, e-commerce and e-business processes, - ICT expenditure and investment, - ICT security and trust, - use of ICT and its impact on the environment (Green ICT), - access to and use of the Internet and other network technologies for connecting objects and devices (Internet of Things), - access to and use of technologies providing the ability to connect to the Internet or other networks from anywhere at any time (ubiquitous connectivity). Breakdowns: - by size class, - by NACE categories, - by region (until 2010)
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 February, 2019
      Select Dataset
      The main aim of 2017 ad-hoc module is to provide information on the self-employed and on persons in an ambivalent professional status (at the border between employment and self-employment). The module includes 11 variables, split in 3 sub-modules. Sub-module 1: Economically dependent self-employed The first sub-module aims to measure the degree of economic/organisational dependency of the self-employed, in terms of the number of clients and the percentage of income coming from a client as well as in terms of control over working hours. This sub-module includes 2 variables: MAINCLNT: Economic dependencyWORKORG: Organisational dependencySub-module 2: Working conditions for self-employed The aim of the second sub-module is to investigate the working conditions of the self-employed, like working with partners or using employees. It also collects factors that motivated or forced a person to become self-employed, as well as the main difficulty they face working as self-employed. This sub-module includes 5 variables: REASSE: Main reason for becoming self-employed               SEDIFFIC: Main difficulty as self-employed                         REASNOEM: Main reason for not having employees                        BPARTNER:  Working with business partners                                    PLANEMPL:  Planning hiring of employees or subcontracting           Sub-module 3: Comparing employees and self-employed The third sub-module targets the comparison between self-employed, employees and family workers in terms of job satisfaction and autonomy. It also gathers information on the preferred professional status. This sub-module includes 4 variables: JBSATISFQ:  Job satisfaction                                                AUTONOMY: Job autonomy                                                PREFSTAP: Preferred professional status in the main job      OBSTACSE: Main reason for not becoming self-employed  Detailed information on the relevant methodology for the ad-hoc module (including the Commission regulation and explanatory notes) as well as documentation from each participating country (national questionnaires and interviewers instructions) can be found on EU-LFS (Statistics Explained) - Ad-hoc modules.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 24 March, 2019
      Select Dataset
      The folder 'population by educational attainment level (edat1)' presents data on the highest level of education successfully completed by the individuals of a given population. The folder 'transition from education to work (edatt)' covers data on young people neither in employment nor in education and training – NEET, early leavers from education and training and the labour status of young people by years since completion of highest level of education. The data shown are calculated as annual averages of quarterly EU Labour Force Survey data (EU-LFS). Up to the reference year 2008, the data source (EU-LFS) is, where necessary, adjusted and enriched in various ways, in accordance with the specificities of an indicator, including the following:correction of the main breaks in the LFS series,estimation of the missing values, i.e. in case of missing quarters, annual results and EU aggregates are estimated using adjusted quarterly national labour force survey data or interpolations of the EU-LFS data with reference to the available quarter(s). Details on the adjustments are available in CIRCABC. The adjustments are applied in the following online tables:Population by educational attainment level (edat1)   - Population by educational attainment level, sex and age (%) - main indicators (edat_lfse_03) - Population aged 25-64 by educational attainment level, sex and NUTS 2 regions (%) (edat_lfse_04) - Population aged 30-34 by educational attainment level, sex and NUTS 2 regions (%) (edat_lfse_12) (Other tables shown in the folder 'population by educational attainment level (edat1)' are not adjusted and therefore the results in these tables might differ).Young people by educational and labour status (incl. neither in employment nor in education and training - NEET) (edatt0) – all tablesEarly leavers from education and training (edatt1) – all tablesLabour status of young people by years since completion of highest level of education (edatt2) – all tables  LFS ad-hoc module data available in the folder 'transition from education to work (edatt)' are not adjusted.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 February, 2019
      Select Dataset
      Results from the 2010 LFS (Labour Force Survey) ad hoc module on the reconciliation between work and family life. The aims of the module is to establish how far persons participate in the labour force as they wish and if not, whether the reasons are connected with a lack of suitable care services for children and dependant persons: 1. identification of care responsibilities (children and dependants) 2. analysis of the consequences on labour market participation taking into account the options and constraints given 3. in case of constraints, identification of those linked with the lack or unsuitability of care services A further aim is to analyse the degree of flexibility offered at work in terms of reconciliation with family life as well as to estimate how often career breaks occur and how far leave of absence is taken.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 February, 2019
      Select Dataset
      Results from the 2010 LFS (Labour Force Survey) ad hoc module on the reconciliation between work and family life. The aims of the module is to establish how far persons participate in the labour force as they wish and if not, whether the reasons are connected with a lack of suitable care services for children and dependant persons: 1. identification of care responsibilities (children and dependants) 2. analysis of the consequences on labour market participation taking into account the options and constraints given 3. in case of constraints, identification of those linked with the lack or unsuitability of care services A further aim is to analyse the degree of flexibility offered at work in terms of reconciliation with family life as well as to estimate how often career breaks occur and how far leave of absence is taken.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 09 April, 2019
      Select Dataset
      The ad-hoc module "labour market situation of migrants and their immediate descendants" aimed at comparing the situation on the labour market for first generation immigrants, second generation immigrants, and nationals, and further to analyse the factors affecting the integration in and adaptation to the labour market.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 16 April, 2019
      Select Dataset
      The section 'LFS series - detailed quarterly survey results' reports detailed quarterly results going beyond the EU-LFS main aggregates, which have a separate data domain and some methodological differences. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • April 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 16 April, 2019
      Select Dataset
      The section 'LFS series - detailed quarterly survey results' reports detailed quarterly results going beyond the EU-LFS main aggregates, which have a separate data domain and some methodological differences. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 16 April, 2019
      Select Dataset
      The section 'LFS series - detailed annual survey results' reports annual results from the EU-LFS. While LFS is a quarterly survey, it is also possible to produce annual results. There are several ways of doing it, see section '20.5 Data compilation' below for details. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • April 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 08 April, 2019
      Select Dataset
      The section 'LFS series - detailed quarterly survey results' reports detailed quarterly results going beyond the EU-LFS main aggregates, which have a separate data domain and some methodological differences. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 19 March, 2019
      Select Dataset
      The section 'LFS series - detailed annual survey results' reports annual results from the EU-LFS. While LFS is a quarterly survey, it is also possible to produce annual results. There are several ways of doing it, see section '20.5 Data compilation' below for details. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • April 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 11 April, 2019
      Select Dataset
      The section 'LFS series - detailed quarterly survey results' reports detailed quarterly results going beyond the EU-LFS main aggregates, which have a separate data domain and some methodological differences. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 30 March, 2019
      Select Dataset
      The section 'LFS series - detailed annual survey results' reports annual results from the EU-LFS. While LFS is a quarterly survey, it is also possible to produce annual results. There are several ways of doing it, see section '20.5 Data compilation' below for details. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 February, 2019
      Select Dataset
      Results from the 2010 LFS (Labour Force Survey) ad hoc module on the reconciliation between work and family life. The aims of the module is to establish how far persons participate in the labour force as they wish and if not, whether the reasons are connected with a lack of suitable care services for children and dependant persons: 1. identification of care responsibilities (children and dependants) 2. analysis of the consequences on labour market participation taking into account the options and constraints given 3. in case of constraints, identification of those linked with the lack or unsuitability of care services A further aim is to analyse the degree of flexibility offered at work in terms of reconciliation with family life as well as to estimate how often career breaks occur and how far leave of absence is taken.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 21 March, 2019
      Select Dataset
      The section 'LFS series - detailed annual survey results' reports annual results from the EU-LFS. While LFS is a quarterly survey, it is also possible to produce annual results. There are several ways of doing it, see section '18.5 Data compilation' below for details. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metadata. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 February, 2019
      Select Dataset
      The ad-hoc module "young people on the labour market" provides supplementary information on the correlation between work-based learning and labour market outcomes.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 February, 2019
      Select Dataset
      Results from the 2010 LFS (Labour Force Survey) ad hoc module on the reconciliation between work and family life. The aims of the module is to establish how far persons participate in the labour force as they wish and if not, whether the reasons are connected with a lack of suitable care services for children and dependant persons: 1. identification of care responsibilities (children and dependants) 2. analysis of the consequences on labour market participation taking into account the options and constraints given 3. in case of constraints, identification of those linked with the lack or unsuitability of care services A further aim is to analyse the degree of flexibility offered at work in terms of reconciliation with family life as well as to estimate how often career breaks occur and how far leave of absence is taken.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 11 February, 2019
      Select Dataset
      The 'LFS main indicators' section presents a selection of the main statistics on the labour market. They encompass indicators of activity employment and unemployment. Those indicators are based on the results of the European Labour Force Survey (EU-LFS), in few cases integrated with data sources like national accounts employment or registered unemployment. As a result of the application of adjustments, corrections and reconciliation of EU Labour Force Survey (EU-LFS), 'LFS main indicators' is the most complete and reliable collection of employment and unemployment data available in the sub-domain ' Employment and unemployment'. The EU-LFS data used for 'LFS main indicators' are, where necessary, adjusted and enriched in various ways, in accordance with the specificities of an indicator.  The most common adjustments cover: - correction of the main breaks in the LFS series - estimation of the missing values, (i.e. in case of missing quarters, annual results and EU aggregates are estimated using adjusted quarterly national labour force survey data or interpolations of the EU Labour Force Survey data with reference to the available quarter(s)) - reconciliations of the LFS data with other sources, mainly National Accounts (for Employment growth and activity branches) and national statistics on monthly unemployment (for Harmonised unemployment series). - for a number of indicators (employment, activity, unemployment, supplementary indicators) seasonally adjusted data are available Those adjustments may produce some differences between data published under 'LFS main indicators' and 'LFS series - Detailed survey results', particularly for back data. For the most recent years these two series converge, due to the implementation of a continuous quarterly survey and the improved quality of the data. This page focuses on the particularities of 'LFS main indicators' in general. There are special pages for indicators 'employment growth', 'population in jobless households', 'average exit age of labour market' and 'education indicators: life-long learning, early school leavers and youth education attainment level. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 February, 2019
      Select Dataset
      The ad-hoc module "young people on the labour market" provides supplementary information on the correlation between work-based learning and labour market outcomes.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 February, 2019
      Select Dataset
      The ad-hoc module "young people on the labour market" provides supplementary information on the correlation between work-based learning and labour market outcomes.
    • April 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 06 April, 2019
      Select Dataset
      In the MIP context the indicators Employment and Employees are used for the calculation of the Unit labour cost index. Both Employment and Employees source from the National accounts domain. National accounts are a coherent and consistent set of macroeconomic indicators, which provide an overall picture of the economic situation and are widely used for economic analysis and forecasting, policy design and policy making. Eurostat publishes annual and quarterly national accounts data. Annual national accounts are compiled in accordance with the European System of Accounts - ESA 2010 as defined in Annex B of the Council Regulation (EU) No 549/2013 of the European Parliament and of the Council of 21 May 2013. The revisions are reflected in an updated Regulation of the European Parliament and of the Council on the European system of national and regional accounts in the European Union of 2010 (ESA 2010). The associated transmission programme is also updated and data transmissions in accordance with ESA 2010 are compulsory from September 2014 onwards.
    • July 2018
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 26 July, 2018
      Select Dataset
      The source for regional typology statistics are regional indicators at NUTS level 3 published on the Eurostat website or existing in the Eurostat production database. The structure of this domain is as follows: - Metropolitan regions (met)    For details see http://ec.europa.eu/eurostat/web/metropolitan-regions/overview - Maritime policy indicators (mare)    For details see http://ec.europa.eu/eurostat/web/maritime-policy-indicators/overview - Urban-rural typology (urt)    For details see http://ec.europa.eu/eurostat/web/rural-development/overview
    • July 2018
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 26 July, 2018
      Select Dataset
      The source for regional typology statistics are regional indicators at NUTS level 3 published on the Eurostat website or existing in the Eurostat production database. The structure of this domain is as follows: - Metropolitan regions (met)    For details see http://ec.europa.eu/eurostat/web/metropolitan-regions/overview - Maritime policy indicators (mare)    For details see http://ec.europa.eu/eurostat/web/maritime-policy-indicators/overview - Urban-rural typology (urt)    For details see http://ec.europa.eu/eurostat/web/rural-development/overview
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 19 February, 2019
      Select Dataset
      Eurostat Dataset Id:med_ps411 The focus of this domain is on the following countries:Algeria, Egypt, Israel, Jordan, Lebanon, Morocco, Palestinian Authority, Syria, Tunisia. Data are provided for over 1000 indicators depending on the country.   The data for the Mediterranean partner countries are supplied by and under the responsibility of the national statistical authorities  of each of the countries or territories. The data and their denomination in no way constitute the  expression of an opinion by the European Commission on the  legal status of a country or territory or on the delimitation of its frontiers. Â
    • August 2014
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 28 November, 2015
      Select Dataset
      The data in this domain is collected by Eurostat in close cooperation with DG MARKT in the context of the annual "EU Postal Survey" (voluntary data collection). The partners in the data collection are the National Regulatory Authorities (NRAs) in the participating countries. The list of indicators/questionnaires and the definitions (Glossary) were agreed in cooperation with the European Postal Regulators in the project group "Assistance and development of EU statistics" of the European Committee for Postal Regulation (CERP). The data presented cover the companies operating under the Universal Service obligation (Universal Service Providers - USP). For countries where a USP no longer exists, the company which was the USP prior to liberalisation is referred to. "Universal service" refers here to the set of general interest demands to which services such as the mail should be subject throughout the Community.  The collection of 'Postal Services' includes data on employment, turnover, access points, traffic, prices and quality of service.
    • January 2015
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 August, 2015
      Select Dataset
    • October 2015
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 21 October, 2015
      Select Dataset
      Eurostat Dataset Id:met_e3em95r2
    • June 2012
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 28 November, 2015
      Select Dataset
      The source for regional typology statistics are regional indicators at NUTS level 3 published on the Eurostat website or existing in the Eurostat production database. The structure of this domain is as follows: - Metropolitan regions (met)    For details see http://ec.europa.eu/eurostat/web/metropolitan-regions/overview - Maritime policy indicators (mare)    For details see http://ec.europa.eu/eurostat/web/maritime-policy-indicators/overview - Urban-rural typology (urt)    For details see http://ec.europa.eu/eurostat/web/rural-development/overview
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 04 March, 2019
      Select Dataset
      Regional accounts are a regional specification of the national accounts and therefore based on the same concepts and definitions as national accounts (see domain nama10). The main specific regional issues are addressed in chapter 13 of ESA2010, but not practically specified. For practical rules and recommendations on sources and methods see the publication "Manual on regional accounts methods": http://ec.europa.eu/eurostat/en/web/products-manuals-and-guidelines/-/KS-GQ-13-001 . Gross domestic product (GDP) at market prices is the final result of the production activity of resident producer units. It can be defined in three ways: 1. Output approach GDP is the sum of gross value added of the various institutional sectors or the various industries plus taxes and less subsidies on products (which are not allocated to sectors and industries). It is also the balancing item in the total economy production account. 2. Expenditure approach GDP is the sum of final uses of goods and services by resident institutional units (final consumption expenditure and gross capital formation), plus exports and minus imports of goods and services. At regional level the expenditure approach cannot be used in the EU, because there is no data on regional exports and imports.  3. Income approach GDP is the sum of uses in the total economy generation of income account: compensation of employees plus gross operating surplus and mixed income plus taxes on products less subsidies plus consumption of fixed capital. The different measures for the regional GDP are absolute figures in € and Purchasing Power Standards (PPS), figures per inhabitant and relative data compared to the EU28 average.
    • August 2017
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 23 August, 2017
      Select Dataset
      The source for regional typology statistics are regional indicators at NUTS level 3 published on the Eurostat website or existing in the Eurostat production database. The structure of this domain is as follows: - Metropolitan regions (met)    For details see http://ec.europa.eu/eurostat/web/metropolitan-regions/overview - Maritime policy indicators (mare)    For details see http://ec.europa.eu/eurostat/web/maritime-policy-indicators/overview - Urban-rural typology (urt)    For details see http://ec.europa.eu/eurostat/web/rural-development/overview
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 05 March, 2019
      Select Dataset
      Regional accounts are a regional specification of the national accounts and therefore based on the same concepts and definitions as national accounts (see domain nama10). The main specific regional issues are addressed in chapter 13 of ESA2010, but not practically specified. For practical rules and recommendations on sources and methods see the publication "Manual on regional accounts methods": http://ec.europa.eu/eurostat/en/web/products-manuals-and-guidelines/-/KS-GQ-13-001 . Gross domestic product (GDP) at market prices is the final result of the production activity of resident producer units. It can be defined in three ways: 1. Output approach GDP is the sum of gross value added of the various institutional sectors or the various industries plus taxes and less subsidies on products (which are not allocated to sectors and industries). It is also the balancing item in the total economy production account. 2. Expenditure approach GDP is the sum of final uses of goods and services by resident institutional units (final consumption expenditure and gross capital formation), plus exports and minus imports of goods and services. At regional level the expenditure approach cannot be used in the EU, because there is no data on regional exports and imports.  3. Income approach GDP is the sum of uses in the total economy generation of income account: compensation of employees plus gross operating surplus and mixed income plus taxes on products less subsidies plus consumption of fixed capital. The different measures for the regional GDP are absolute figures in € and Purchasing Power Standards (PPS), figures per inhabitant and relative data compared to the EU28 average.
    • April 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 11 April, 2019
      Select Dataset
      Data in this domain constitute only a small part of the entire National Accounts data range available from Eurostat. Annual and quarterly national accounts are compiled in accordance with the European System of Accounts - ESA 2010 as defined in Annex B of the Council Regulation (EU) No 549/2013 of the European Parliament and of the Council of 21 May 2013. The previous European System of Accounts, ESA95, was reviewed to bring national accounts in the European Union, in line with new economic environment, advances in methodological research and needs of users and the updated national accounts framework at the international level, the SNA 2008. The revisions are reflected in an updated Regulation of the European Parliament and of the Council on the European system of national and regional accounts in the European Union of 2010 (ESA 2010). The associated transmission programme is also updated and data transmissions in accordance with ESA 2010 are compulsory from September 2014 onwards. Further information on the transition from ESA 95 to ESA 2010 is presented on the Eurostat website. The annual data of this domain consists of the following collections: 1. Main GDP aggregates: main components from the output, expenditure and income side. nama_10_gdp: GDP and main components (output, expenditure and income) The quarterly data of this domain consists of the following collections 1. Main GDP aggregates, main components from the output, expenditure and income side, expenditure breakdowns by industry and assets. namq_10_ma: Main GDP aggregatesnamq_10_gdp: GDP and main components (output, expenditure and income)namq_10_fcs: Final consumption aggregates by durabilitynamq_10_exi: Exports and imports by Member States of the EU/third countries 2. Breakdowns of GDP aggregates and employment data by main industries and asset classes. namq_10_bbr: Basic breakdowns main GDP aggregates and employment (by industry and assets)namq_10_a10: Gross value added and income by A*10 industrynamq_10_an6: Gross fixed capital formation by AN_F6 asset typenamq_10_a10_e: Employment by A*10 industry breakdowns Geographical entities covered are the European Union, the euro area, EU Member States, Candidate Countries, EFTA countries, US, Japan and possibly other countries on an ad-hoc basis. Data sources: National Statistical Institutes.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 11 February, 2019
      Select Dataset
      The definitions of employment and unemployment, as well as other survey characteristics follow the definitions and recommendations of the International Labour Organisation. The definition of unemployment is further precised in Commission Regulation (EC) No 1897/2000. The main concepts related to the labour status are the following:Employed persons are all persons who worked at least one hour for pay or profit during the reference week or were temporarily absent from such work.Unemployed persons are all persons who were not employed during the reference week and had actively sought work during the past four weeks and were ready to begin working immediately or within two weeks.The active population (labour force) is defined as the sum of employed and unemployed persons.The inactive population consists of all persons who are classified neither as employed nor as unemployed. Relevant breakdowns used are the following:Part-time workers are employed persons not working full time. The distinction between full-time and part-time work is generally based on a spontaneous response by the respondent. The main exceptions are the Netherlands and Iceland where a 35 hours threshold is applied, Sweden where a threshold is applied to the self-employed, and Norway where persons working between 32 and 36 hours are asked whether this is a full- or part-time position. Temporary contracts :  Employees with a limited duration job/contract are employees whose the main job will terminate either after a period fixed in advance, or after a period not known in advance, but nevertheless defined by objective criteria, such as the completion of an assignment or the period of absence of an employee temporarily replaced. The concept of fixed-term contract is only applicable to employees, not to self-employed. In most of the EU Member States, a majority of jobs are based on written labour contracts. In some countries, however, contracts of this type are settled only in specific cases e.g. for public-sector jobs, apprentices or other trainees within an enterprise. Educational attainment level  ISCED 0-2, ISCED3+4, ISCED5+ : The educational attainment level of an individual is the highest ISCED level successfully completed, the successful completion of an educational programme being validated by a recognised qualification (or credential), i.e. a qualification officially recognised by the relevant national education authorities. The indicators to supplement the unemployment rate are defined as follows:Underemployed part-time workers are persons working part-time who wish to work additional hours and are available to do so. Part-time work is recorded as self-reported by individuals.Persons seeking work but not immediately available are the sum of persons neither employed nor unemployed who: (a) are actively seeking work during the last 4 weeks but not available for work in the next 2 weeks; or (b)found a job to start in less than 3 months and are not available for work in the next 2 weeks; or (c) found a job to start in 3 months or more; or (d)are passively seeking work during the last 4 weeks and are available for work in the next 2 weeks.Persons available to work but not seeking are persons neither employed nor unemployed who want to work, are available for work in the next 2 weeks but are not seeking work. For more details, please consult the EU-LFS (Statistics Explained) - Methodology.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 11 February, 2019
      Select Dataset
      The 'LFS main indicators' section presents a selection of the main statistics on the labour market. They encompass indicators of activity employment and unemployment. Those indicators are based on the results of the European Labour Force Survey (EU-LFS), in few cases integrated with data sources like national accounts employment or registered unemployment. As a result of the application of adjustments, corrections and reconciliation of EU Labour Force Survey (EU-LFS), 'LFS main indicators' is the most complete and reliable collection of employment and unemployment data available in the sub-domain ' Employment and unemployment'. The EU-LFS data used for 'LFS main indicators' are, where necessary, adjusted and enriched in various ways, in accordance with the specificities of an indicator.  The most common adjustments cover: - correction of the main breaks in the LFS series - estimation of the missing values, (i.e. in case of missing quarters, annual results and EU aggregates are estimated using adjusted quarterly national labour force survey data or interpolations of the EU Labour Force Survey data with reference to the available quarter(s)) - reconciliations of the LFS data with other sources, mainly National Accounts (for Employment growth and activity branches) and national statistics on monthly unemployment (for Harmonised unemployment series). - for a number of indicators (employment, activity, unemployment, supplementary indicators) seasonally adjusted data are available Those adjustments may produce some differences between data published under 'LFS main indicators' and 'LFS series - Detailed survey results', particularly for back data. For the most recent years these two series converge, due to the implementation of a continuous quarterly survey and the improved quality of the data. This page focuses on the particularities of 'LFS main indicators' in general. There are special pages for indicators 'employment growth', 'population in jobless households', 'average exit age of labour market' and 'education indicators: life-long learning, early school leavers and youth education attainment level. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 22 March, 2019
      Select Dataset
      The source for the regional labour market information down to NUTS level 2 is the EU Labour Force Survey (EU-LFS). This is a quarterly household sample survey conducted in all Member States of the EU and in EFTA and Candidate countries.  The EU-LFS survey follows the definitions and recommendations of the International Labour Organisation (ILO). To achieve further harmonisation, the Member States also adhere to common principles when formulating questionnaires. The LFS' target population is made up of all persons in private households aged 15 and over. For more information see the EU Labour Force Survey (lfsi_esms, see paragraph 21.1.).  The EU-LFS is designed to give accurate quarterly information at national level as well as annual information at NUTS 2 regional level and the compilation of these figures is well specified in the regulation. Microdata including the NUTS 2 level codes are provided by all the participating countries with a good degree of geographical comparability, which allows the production and dissemination of a complete set of comparable indicators for this territorial level. At present the transmission of the regional labour market data at NUTS 3 level has no legal basis. However many countries transmit NUTS 3 figures to Eurostat on a voluntary basis, under the understanding that they are not for publication with such detail, but for aggregation in few categories per country, i.e., metropolitan regions and urban-rural typology. Most of the NUTS 3 data are based on the LFS while some countries transmit data based on registers, administrative data, small area estimation and other reliable sources.
    • August 2016
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 02 September, 2016
      Select Dataset
      The focus of this domain is on the European Neighbourhood Policy (ENP) countries on the southern and eastern shores of the Mediterranean (ENP-South), namely: Algeria (DZ),Egypt (EG),Israel (IL),Jordan (JO),Lebanon (LB),Libya (LY),Morocco (MA),Palestine (PS),Syria (SY) andTunisia (TN). An extensive range of indicators is presented in this domain, including indicators from almost every theme covered by European statistics. Only annual data are published in this domain. The data and their denomination in no way constitute the expression of an opinion by the European Commission on the legal status of a country or territory or on the delimitation of its borders.
    • April 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 06 April, 2019
      Select Dataset
      National accounts are a coherent set of macroeconomic indicators, which provide an overall picture of the economic situation and are widely used for economic analysis and forecasting, policy design and policy making. The data presented in this collection are the results of a pilot exercise on the sharing selected main GDP aggregates, population and employment data collected by different international organisations. It wasconducted by the Task Force in International Data Collection (TFIDC) which was established by the  Inter-Agency Group on Economic and Financial Statistics (IAG).  The goal of this pilot is to develop a set of commonly shared principles and working arrangements for data cooperation that could be implemented by the international agencies. The data sets are an experimental exercise to present national accounts data form various countries across the globe in one coherent folder, but users should be aware that these data are collected and validated by different organisations and not fully harmonised from a methodological point of view.  The domain consists of the following collections:
    • April 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 02 April, 2019
      Select Dataset
      National accounts are a coherent set of macroeconomic indicators, which provide an overall picture of the economic situation and are widely used for economic analysis and forecasting, policy design and policy making. The data presented in this collection are the results of a pilot exercise on the sharing selected main GDP aggregates, population and employment data collected by different international organisations. It wasconducted by the Task Force in International Data Collection (TFIDC) which was established by the  Inter-Agency Group on Economic and Financial Statistics (IAG).  The goal of this pilot is to develop a set of commonly shared principles and working arrangements for data cooperation that could be implemented by the international agencies. The data sets are an experimental exercise to present national accounts data form various countries across the globe in one coherent folder, but users should be aware that these data are collected and validated by different organisations and not fully harmonised from a methodological point of view.  The domain consists of the following collections:
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 19 March, 2019
      Select Dataset
      The section 'LFS series - detailed annual survey results' reports annual results from the EU-LFS. While LFS is a quarterly survey, it is also possible to produce annual results. There are several ways of doing it, see section '18.5 Data compilation' below for details. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metadata. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • April 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 08 April, 2019
      Select Dataset
      National accounts are a coherent and consistent set of macroeconomic indicators, which provide an overall picture of the economic situation and are widely used for economic analysis and forecasting, policy design and policy making. Eurostat publishes annual and quarterly national accounts, annual and quarterly sector accounts as well as supply, use and input-output tables, which are each presented with associated metadata. Even though consistency checks are a major aspect of data validation, temporary (usually limited) inconsistencies between datasets may occur, mainly due to vintage effects. Annual national accounts are compiled in accordance with the European System of Accounts - ESA 2010 as defined in Annex B of the Council Regulation (EU) No 549/2013 of the European Parliament and of the Council of 21 May 2013.   The previous European System of Accounts, ESA95, was reviewed to bring national accounts in the European Union, in line with new economic environment, advances in methodological research and needs of users and the updated national accounts framework at the international level, the SNA 2008. The revisions are reflected in an updated Regulation of the European Parliament and of the Council on the European system of national and regional accounts in the European Union of 2010 (ESA 2010). The associated transmission programme is also updated and data transmissions in accordance with ESA 2010 are compulsory from September 2014 onwards. Further information (including actual communications) is presented on the Eurostat website. The domain consists of the following collections:   1. Main GDP aggregates: main components from the output, expenditure and income side, expenditure breakdowns by durability and exports and imports by origin.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 25 March, 2019
      Select Dataset
      The source for the regional labour market information down to NUTS level 2 is the EU Labour Force Survey (EU-LFS). This is a quarterly household sample survey conducted in all Member States of the EU and in EFTA and Candidate countries.  The EU-LFS survey follows the definitions and recommendations of the International Labour Organisation (ILO). To achieve further harmonisation, the Member States also adhere to common principles when formulating questionnaires. The LFS' target population is made up of all persons in private households aged 15 and over. For more information see the EU Labour Force Survey (lfsi_esms, see paragraph 21.1.).  The EU-LFS is designed to give accurate quarterly information at national level as well as annual information at NUTS 2 regional level and the compilation of these figures is well specified in the regulation. Microdata including the NUTS 2 level codes are provided by all the participating countries with a good degree of geographical comparability, which allows the production and dissemination of a complete set of comparable indicators for this territorial level. At present the transmission of the regional labour market data at NUTS 3 level has no legal basis. However many countries transmit NUTS 3 figures to Eurostat on a voluntary basis, under the understanding that they are not for publication with such detail, but for aggregation in few categories per country, i.e., metropolitan regions and urban-rural typology. Most of the NUTS 3 data are based on the LFS while some countries transmit data based on registers, administrative data, small area estimation and other reliable sources.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 12 April, 2019
      Select Dataset
      The source for the regional labour market information down to NUTS level 2 is the EU Labour Force Survey (EU-LFS). This is a quarterly household sample survey conducted in all Member States of the EU and in EFTA and Candidate countries.  The EU-LFS survey follows the definitions and recommendations of the International Labour Organisation (ILO). To achieve further harmonisation, the Member States also adhere to common principles when formulating questionnaires. The LFS' target population is made up of all persons in private households aged 15 and over. For more information see the EU Labour Force Survey (lfsi_esms, see paragraph 21.1.).  The EU-LFS is designed to give accurate quarterly information at national level as well as annual information at NUTS 2 regional level and the compilation of these figures is well specified in the regulation. Microdata including the NUTS 2 level codes are provided by all the participating countries with a good degree of geographical comparability, which allows the production and dissemination of a complete set of comparable indicators for this territorial level. At present the transmission of the regional labour market data at NUTS 3 level has no legal basis. However many countries transmit NUTS 3 figures to Eurostat on a voluntary basis, under the understanding that they are not for publication with such detail, but for aggregation in few categories per country, i.e., metropolitan regions and urban-rural typology. Most of the NUTS 3 data are based on the LFS while some countries transmit data based on registers, administrative data, small area estimation and other reliable sources.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 24 March, 2019
      Select Dataset
      The source for the regional labour market information down to NUTS level 2 is the EU Labour Force Survey (EU-LFS). This is a quarterly household sample survey conducted in all Member States of the EU and in EFTA and Candidate countries.  The EU-LFS survey follows the definitions and recommendations of the International Labour Organisation (ILO). To achieve further harmonisation, the Member States also adhere to common principles when formulating questionnaires. The LFS' target population is made up of all persons in private households aged 15 and over. For more information see the EU Labour Force Survey (lfsi_esms, see paragraph 21.1.).  The EU-LFS is designed to give accurate quarterly information at national level as well as annual information at NUTS 2 regional level and the compilation of these figures is well specified in the regulation. Microdata including the NUTS 2 level codes are provided by all the participating countries with a good degree of geographical comparability, which allows the production and dissemination of a complete set of comparable indicators for this territorial level. At present the transmission of the regional labour market data at NUTS 3 level has no legal basis. However many countries transmit NUTS 3 figures to Eurostat on a voluntary basis, under the understanding that they are not for publication with such detail, but for aggregation in few categories per country, i.e., metropolitan regions and urban-rural typology. Most of the NUTS 3 data are based on the LFS while some countries transmit data based on registers, administrative data, small area estimation and other reliable sources.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 22 March, 2019
      Select Dataset
      The source for the regional labour market information down to NUTS level 2 is the EU Labour Force Survey (EU-LFS). This is a quarterly household sample survey conducted in all Member States of the EU and in EFTA and Candidate countries.  The EU-LFS survey follows the definitions and recommendations of the International Labour Organisation (ILO). To achieve further harmonisation, the Member States also adhere to common principles when formulating questionnaires. The LFS' target population is made up of all persons in private households aged 15 and over. For more information see the EU Labour Force Survey (lfsi_esms, see paragraph 21.1.).  The EU-LFS is designed to give accurate quarterly information at national level as well as annual information at NUTS 2 regional level and the compilation of these figures is well specified in the regulation. Microdata including the NUTS 2 level codes are provided by all the participating countries with a good degree of geographical comparability, which allows the production and dissemination of a complete set of comparable indicators for this territorial level. At present the transmission of the regional labour market data at NUTS 3 level has no legal basis. However many countries transmit NUTS 3 figures to Eurostat on a voluntary basis, under the understanding that they are not for publication with such detail, but for aggregation in few categories per country, i.e., metropolitan regions and urban-rural typology. Most of the NUTS 3 data are based on the LFS while some countries transmit data based on registers, administrative data, small area estimation and other reliable sources.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 02 April, 2019
      Select Dataset
      The ad-hoc module "labour market situation of migrants and their immediate descendants" aimed at comparing the situation on the labour market for first generation immigrants, second generation immigrants, and nationals, and further to analyse the factors affecting the integration in and adaptation to the labour market.
    • November 2018
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 23 November, 2018
      Select Dataset
      The source for regional typology statistics are regional indicators at NUTS level 3 published on the Eurostat website or existing in the Eurostat production database. The structure of this domain is as follows: - Metropolitan regions (met)    For details see http://ec.europa.eu/eurostat/web/metropolitan-regions/overview - Maritime policy indicators (mare)    For details see http://ec.europa.eu/eurostat/web/maritime-policy-indicators/overview - Urban-rural typology (urt)    For details see http://ec.europa.eu/eurostat/web/rural-development/overview
    • November 2018
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 23 November, 2018
      Select Dataset
      The source for regional typology statistics are regional indicators at NUTS level 3 published on the Eurostat website or existing in the Eurostat production database. The structure of this domain is as follows: - Metropolitan regions (met)    For details see http://ec.europa.eu/eurostat/web/metropolitan-regions/overview - Maritime policy indicators (mare)    For details see http://ec.europa.eu/eurostat/web/maritime-policy-indicators/overview - Urban-rural typology (urt)    For details see http://ec.europa.eu/eurostat/web/rural-development/overview
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 12 April, 2019
      Select Dataset
      The section 'LFS series - detailed annual survey results' reports annual results from the EU-LFS. While LFS is a quarterly survey, it is also possible to produce annual results. There are several ways of doing it, see section '18.5 Data compilation' below for details. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metadata. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • April 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 06 April, 2019
      Select Dataset
      Employment consists of both employees and self-employed, who are engaged in some productive activity that falls within the production boundary of the system (ESA 2010, 11.11). Employment covers employees and self-employed working for production units resident on the economic territory (i.e. the domestic employment concept). Employment is measured in number of persons without distinction according to full-time or part-time work. Growth rates with respect to the previous quarter (Q/Q-1) are calculated from seasonally and calendar adjusted figures while growth rates with respect to the same quarter of the previous year (Q/Q-4) are calculated from non-seasonal adjusted data.
    • April 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 06 April, 2019
      Select Dataset
      Employment consists of both employees and self-employed, who are engaged in some productive activity that falls within the production boundary of the system (ESA 2010, 11.11). Employment covers employees and self-employed working for production units resident on the economic territory (i.e. the domestic employment concept). Employment is measured in number of persons without distinction according to full-time or part-time work. Growth rates with respect to the previous quarter (Q/Q-1) are calculated from seasonally adjusted figures while growth rates with respect to the same quarter of the previous year (Q/Q-4) are calculated from non-seasonal adjusted data.
    • April 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 08 April, 2019
      Select Dataset
      The section 'LFS series - detailed quarterly survey results' reports detailed quarterly results going beyond the EU-LFS main aggregates, which have a separate data domain and some methodological differences. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 19 March, 2019
      Select Dataset
      The section 'LFS series - detailed annual survey results' reports annual results from the EU-LFS. While LFS is a quarterly survey, it is also possible to produce annual results. There are several ways of doing it, see section '20.5 Data compilation' below for details. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • January 2017
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 21 January, 2017
      Select Dataset
      The source for regional typology statistics are regional indicators at NUTS level 3 published on the Eurostat website or existing in the Eurostat production database. The structure of this domain is as follows: - Metropolitan regions (met)    For details see http://ec.europa.eu/eurostat/web/metropolitan-regions/overview - Maritime policy indicators (mare)    For details see http://ec.europa.eu/eurostat/web/maritime-policy-indicators/overview - Urban-rural typology (urt)    For details see http://ec.europa.eu/eurostat/web/rural-development/overview
    • April 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 12 April, 2019
      Select Dataset
      The section 'LFS series - detailed quarterly survey results' reports detailed quarterly results going beyond the EU-LFS main aggregates, which have a separate data domain and some methodological differences. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 12 April, 2019
      Select Dataset
      The section 'LFS series - detailed annual survey results' reports annual results from the EU-LFS. While LFS is a quarterly survey, it is also possible to produce annual results. There are several ways of doing it, see section '18.5 Data compilation' below for details. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metadata. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 22 February, 2019
      Select Dataset
      The section 'LFS series - detailed annual survey results' reports annual results from the EU-LFS. While LFS is a quarterly survey, it is also possible to produce annual results. There are several ways of doing it, see section '20.5 Data compilation' below for details. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 16 February, 2019
      Select Dataset
      The section 'LFS series - detailed quarterly survey results' reports detailed quarterly results going beyond the EU-LFS main aggregates, which have a separate data domain and some methodological differences. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 12 March, 2019
      Select Dataset
      The section 'LFS series - detailed quarterly survey results' reports detailed quarterly results going beyond the EU-LFS main aggregates, which have a separate data domain and some methodological differences. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 22 February, 2019
      Select Dataset
      The section 'LFS series - detailed annual survey results' reports annual results from the EU-LFS. While LFS is a quarterly survey, it is also possible to produce annual results. There are several ways of doing it, see section '20.5 Data compilation' below for details. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 16 April, 2019
      Select Dataset
      The section 'LFS series - detailed annual survey results' reports annual results from the EU-LFS. While LFS is a quarterly survey, it is also possible to produce annual results. There are several ways of doing it, see section '20.5 Data compilation' below for details. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 15 April, 2019
      Select Dataset
      The section 'LFS series - detailed quarterly survey results' reports detailed quarterly results going beyond the EU-LFS main aggregates, which have a separate data domain and some methodological differences. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • April 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 15 April, 2019
      Select Dataset
      The section 'LFS series - detailed quarterly survey results' reports detailed quarterly results going beyond the EU-LFS main aggregates, which have a separate data domain and some methodological differences. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 15 April, 2019
      Select Dataset
      The section 'LFS series - detailed annual survey results' reports annual results from the EU-LFS. While LFS is a quarterly survey, it is also possible to produce annual results. There are several ways of doing it, see section '20.5 Data compilation' below for details. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • April 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 09 April, 2019
      Select Dataset
      The section 'LFS series - detailed quarterly survey results' reports detailed quarterly results going beyond the EU-LFS main aggregates, which have a separate data domain and some methodological differences. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 20 March, 2019
      Select Dataset
      The section 'LFS series - detailed annual survey results' reports annual results from the EU-LFS. While LFS is a quarterly survey, it is also possible to produce annual results. There are several ways of doing it, see section '18.5 Data compilation' below for details. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metadata. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 March, 2019
      Select Dataset
      The source for regional typology statistics are regional indicators at NUTS level 3 published on the Eurostat website or existing in the Eurostat production database. The structure of this domain is as follows: - Metropolitan regions (met)    For details see http://ec.europa.eu/eurostat/web/metropolitan-regions/overview - Maritime policy indicators (mare)    For details see http://ec.europa.eu/eurostat/web/maritime-policy-indicators/overview - Urban-rural typology (urt)    For details see http://ec.europa.eu/eurostat/web/rural-development/overview
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 25 March, 2019
      Select Dataset
      The source for the regional labour market information down to NUTS level 2 is the EU Labour Force Survey (EU-LFS). This is a quarterly household sample survey conducted in all Member States of the EU and in EFTA and Candidate countries.  The EU-LFS survey follows the definitions and recommendations of the International Labour Organisation (ILO). To achieve further harmonisation, the Member States also adhere to common principles when formulating questionnaires. The LFS' target population is made up of all persons in private households aged 15 and over. For more information see the EU Labour Force Survey (lfsi_esms, see paragraph 21.1.).  The EU-LFS is designed to give accurate quarterly information at national level as well as annual information at NUTS 2 regional level and the compilation of these figures is well specified in the regulation. Microdata including the NUTS 2 level codes are provided by all the participating countries with a good degree of geographical comparability, which allows the production and dissemination of a complete set of comparable indicators for this territorial level. At present the transmission of the regional labour market data at NUTS 3 level has no legal basis. However many countries transmit NUTS 3 figures to Eurostat on a voluntary basis, under the understanding that they are not for publication with such detail, but for aggregation in few categories per country, i.e., metropolitan regions and urban-rural typology. Most of the NUTS 3 data are based on the LFS while some countries transmit data based on registers, administrative data, small area estimation and other reliable sources.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 March, 2019
      Select Dataset
      The source for regional typology statistics are regional indicators at NUTS level 3 published on the Eurostat website or existing in the Eurostat production database. The structure of this domain is as follows: - Metropolitan regions (met)    For details see http://ec.europa.eu/eurostat/web/metropolitan-regions/overview - Maritime policy indicators (mare)    For details see http://ec.europa.eu/eurostat/web/maritime-policy-indicators/overview - Urban-rural typology (urt)    For details see http://ec.europa.eu/eurostat/web/rural-development/overview
    • April 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 12 April, 2019
      Select Dataset
      The section 'LFS series - detailed quarterly survey results' reports detailed quarterly results going beyond the EU-LFS main aggregates, which have a separate data domain and some methodological differences. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 12 April, 2019
      Select Dataset
      The section 'LFS series - detailed annual survey results' reports annual results from the EU-LFS. While LFS is a quarterly survey, it is also possible to produce annual results. There are several ways of doing it, see section '20.5 Data compilation' below for details. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 13 April, 2019
      Select Dataset
      The source for the regional labour market information down to NUTS level 2 is the EU Labour Force Survey (EU-LFS). This is a quarterly household sample survey conducted in all Member States of the EU and in EFTA and Candidate countries.  The EU-LFS survey follows the definitions and recommendations of the International Labour Organisation (ILO). To achieve further harmonisation, the Member States also adhere to common principles when formulating questionnaires. The LFS' target population is made up of all persons in private households aged 15 and over. For more information see the EU Labour Force Survey (lfsi_esms, see paragraph 21.1.).  The EU-LFS is designed to give accurate quarterly information at national level as well as annual information at NUTS 2 regional level and the compilation of these figures is well specified in the regulation. Microdata including the NUTS 2 level codes are provided by all the participating countries with a good degree of geographical comparability, which allows the production and dissemination of a complete set of comparable indicators for this territorial level. At present the transmission of the regional labour market data at NUTS 3 level has no legal basis. However many countries transmit NUTS 3 figures to Eurostat on a voluntary basis, under the understanding that they are not for publication with such detail, but for aggregation in few categories per country, i.e., metropolitan regions and urban-rural typology. Most of the NUTS 3 data are based on the LFS while some countries transmit data based on registers, administrative data, small area estimation and other reliable sources.
    • April 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 April, 2019
      Select Dataset
      The section 'LFS series - detailed quarterly survey results' reports detailed quarterly results going beyond the EU-LFS main aggregates, which have a separate data domain and some methodological differences. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 22 February, 2019
      Select Dataset
      The section 'LFS series - detailed annual survey results' reports annual results from the EU-LFS. While LFS is a quarterly survey, it is also possible to produce annual results. There are several ways of doing it, see section '20.5 Data compilation' below for details. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • April 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 17 April, 2019
      Select Dataset
      The section 'LFS series - detailed quarterly survey results' reports detailed quarterly results going beyond the EU-LFS main aggregates, which have a separate data domain and some methodological differences. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 22 February, 2019
      Select Dataset
      The section 'LFS series - detailed annual survey results' reports annual results from the EU-LFS. While LFS is a quarterly survey, it is also possible to produce annual results. There are several ways of doing it, see section '20.5 Data compilation' below for details. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 09 March, 2019
      Select Dataset
      The section 'LFS series - detailed quarterly survey results' reports detailed quarterly results going beyond the EU-LFS main aggregates, which have a separate data domain and some methodological differences. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 13 April, 2019
      Select Dataset
      The section 'LFS series - detailed annual survey results' reports annual results from the EU-LFS. While LFS is a quarterly survey, it is also possible to produce annual results. There are several ways of doing it, see section '20.5 Data compilation' below for details. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • April 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 06 April, 2019
      Select Dataset
      The section 'LFS series - detailed quarterly survey results' reports detailed quarterly results going beyond the EU-LFS main aggregates, which have a separate data domain and some methodological differences. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 19 March, 2019
      Select Dataset
      The section 'LFS series - detailed annual survey results' reports annual results from the EU-LFS. While LFS is a quarterly survey, it is also possible to produce annual results. There are several ways of doing it, see section '20.5 Data compilation' below for details. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • June 2014
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 28 November, 2015
      Select Dataset
      In 2011, the European Union Labour Force Survey (EU-LFS) included an ad hoc module (AHM) on employment of disabled people. The module consisted of 11 variables dealing with: Health problems and difficulties in basic activities;Limitations in work caused by health problems/difficulties in basic activities;Special assistance needed or used by people with health problems/difficulties in basic activities;Limitation in work because of other reasons. On the basis of how the module was operationalised, the following two main definitions for disability were considered for presenting the results: Disabled persons = People having a basic activity difficulty (such as seeing, hearing, walking, communicating);Disabled persons = People having a work limitation caused by a longstanding health condition and/or a basic activity difficulty. 32 countries have implemented this module: the EU 28 Member States plus Turkey, Iceland, Norway and Switzerland. The Norwegian data are not disseminated because the AHM questionnaire in Norway only partly complies with the Commission Regulation (EU) No 317/2010 and consequently, the data are incomplete and partly comparable. Missing values, don't know and refusal answers are not considered in the calculations. It means the indicators have been worked out on the respondents and validated answers only.
    • June 2014
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 28 November, 2015
      Select Dataset
      In 2011, the European Union Labour Force Survey (EU-LFS) included an ad hoc module (AHM) on employment of disabled people. The module consisted of 11 variables dealing with: Health problems and difficulties in basic activities;Limitations in work caused by health problems/difficulties in basic activities;Special assistance needed or used by people with health problems/difficulties in basic activities;Limitation in work because of other reasons. On the basis of how the module was operationalised, the following two main definitions for disability were considered for presenting the results: Disabled persons = People having a basic activity difficulty (such as seeing, hearing, walking, communicating);Disabled persons = People having a work limitation caused by a longstanding health condition and/or a basic activity difficulty. 32 countries have implemented this module: the EU 28 Member States plus Turkey, Iceland, Norway and Switzerland. The Norwegian data are not disseminated because the AHM questionnaire in Norway only partly complies with the Commission Regulation (EU) No 317/2010 and consequently, the data are incomplete and partly comparable. Missing values, don't know and refusal answers are not considered in the calculations. It means the indicators have been worked out on the respondents and validated answers only.
    • June 2014
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 28 November, 2015
      Select Dataset
      In 2011, the European Union Labour Force Survey (EU-LFS) included an ad hoc module (AHM) on employment of disabled people. The module consisted of 11 variables dealing with: Health problems and difficulties in basic activities;Limitations in work caused by health problems/difficulties in basic activities;Special assistance needed or used by people with health problems/difficulties in basic activities;Limitation in work because of other reasons. On the basis of how the module was operationalised, the following two main definitions for disability were considered for presenting the results: Disabled persons = People having a basic activity difficulty (such as seeing, hearing, walking, communicating);Disabled persons = People having a work limitation caused by a longstanding health condition and/or a basic activity difficulty. 32 countries have implemented this module: the EU 28 Member States plus Turkey, Iceland, Norway and Switzerland. The Norwegian data are not disseminated because the AHM questionnaire in Norway only partly complies with the Commission Regulation (EU) No 317/2010 and consequently, the data are incomplete and partly comparable. Missing values, don't know and refusal answers are not considered in the calculations. It means the indicators have been worked out on the respondents and validated answers only.
    • June 2014
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 28 November, 2015
      Select Dataset
      In 2011, the European Union Labour Force Survey (EU-LFS) included an ad hoc module (AHM) on employment of disabled people. The module consisted of 11 variables dealing with: Health problems and difficulties in basic activities;Limitations in work caused by health problems/difficulties in basic activities;Special assistance needed or used by people with health problems/difficulties in basic activities;Limitation in work because of other reasons. On the basis of how the module was operationalised, the following two main definitions for disability were considered for presenting the results: Disabled persons = People having a basic activity difficulty (such as seeing, hearing, walking, communicating);Disabled persons = People having a work limitation caused by a longstanding health condition and/or a basic activity difficulty. 32 countries have implemented this module: the EU 28 Member States plus Turkey, Iceland, Norway and Switzerland. The Norwegian data are not disseminated because the AHM questionnaire in Norway only partly complies with the Commission Regulation (EU) No 317/2010 and consequently, the data are incomplete and partly comparable. Missing values, don't know and refusal answers are not considered in the calculations. It means the indicators have been worked out on the respondents and validated answers only.
    • June 2014
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 25 November, 2015
      Select Dataset
      In 2011, the European Union Labour Force Survey (EU-LFS) included an ad hoc module (AHM) on employment of disabled people. The module consisted of 11 variables dealing with:Health problems and difficulties in basic activities;Limitations in work caused by health problems/difficulties in basic activities;Special assistance needed or used by people with health problems/difficulties in basic activities;Limitation in work because of other reasons. On the basis of how the module was operationalised, the following two main definitions for disability were considered for presenting the results:Disabled persons = People having a basic activity difficulty (such as seeing, hearing, walking, communicating);Disabled persons = People having a work limitation caused by a longstanding health condition and/or a basic activity difficulty. 32 countries have implemented this module: the EU 28 Member States plus Turkey, Iceland, Norway and Switzerland. The Norwegian data are not disseminated because the AHM questionnaire in Norway only partly complies with the Commission Regulation (EU) No 317/2010 and consequently, the data are incomplete and partly comparable. Missing values, don't know and refusal answers are not considered in the calculations. It means the indicators have been worked out on the respondents and validated answers only.
    • June 2014
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 28 November, 2015
      Select Dataset
      In 2011, the European Union Labour Force Survey (EU-LFS) included an ad hoc module (AHM) on employment of disabled people. The module consisted of 11 variables dealing with: Health problems and difficulties in basic activities;Limitations in work caused by health problems/difficulties in basic activities;Special assistance needed or used by people with health problems/difficulties in basic activities;Limitation in work because of other reasons. On the basis of how the module was operationalised, the following two main definitions for disability were considered for presenting the results: Disabled persons = People having a basic activity difficulty (such as seeing, hearing, walking, communicating);Disabled persons = People having a work limitation caused by a longstanding health condition and/or a basic activity difficulty. 32 countries have implemented this module: the EU 28 Member States plus Turkey, Iceland, Norway and Switzerland. The Norwegian data are not disseminated because the AHM questionnaire in Norway only partly complies with the Commission Regulation (EU) No 317/2010 and consequently, the data are incomplete and partly comparable. Missing values, don't know and refusal answers are not considered in the calculations. It means the indicators have been worked out on the respondents and validated answers only.
    • June 2014
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 28 November, 2015
      Select Dataset
      In 2011, the European Union Labour Force Survey (EU-LFS) included an ad hoc module (AHM) on employment of disabled people. The module consisted of 11 variables dealing with: Health problems and difficulties in basic activities;Limitations in work caused by health problems/difficulties in basic activities;Special assistance needed or used by people with health problems/difficulties in basic activities;Limitation in work because of other reasons. On the basis of how the module was operationalised, the following two main definitions for disability were considered for presenting the results: Disabled persons = People having a basic activity difficulty (such as seeing, hearing, walking, communicating);Disabled persons = People having a work limitation caused by a longstanding health condition and/or a basic activity difficulty. 32 countries have implemented this module: the EU 28 Member States plus Turkey, Iceland, Norway and Switzerland. The Norwegian data are not disseminated because the AHM questionnaire in Norway only partly complies with the Commission Regulation (EU) No 317/2010 and consequently, the data are incomplete and partly comparable. Missing values, don't know and refusal answers are not considered in the calculations. It means the indicators have been worked out on the respondents and validated answers only.
    • August 2016
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 02 September, 2016
      Select Dataset
      Eurostat Dataset Id:med_ps413 The focus of this domain is on the following countries:Algeria, Egypt, Israel, Jordan, Lebanon, Morocco, Palestinian Authority, Syria, Tunisia. Data are provided for over 1000 indicators depending on the country.   The data for the Mediterranean partner countries are supplied by and under the responsibility of the national statistical authorities  of each of the countries or territories. The data and their denomination in no way constitute the  expression of an opinion by the European Commission on the  legal status of a country or territory or on the delimitation of its frontiers. Â
    • February 2018
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 17 February, 2018
      Select Dataset
    • January 2016
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 22 January, 2016
      Select Dataset
      The indicators 'employment growth and activity branches', both quarterly and annual data, are calculated with special methods different that justify the present page. They are published in the section 'LFS main indicators', which is a collection of the main statistics on the labour market. Employment growth and activity branches combines the two main data sources for employment levels, which are EU-LFS and National Accounts. They not completely coherent, for details please refer to the ESMS page on 'Employment and unemployment (LFS)', section 17.1 Coherence - cross domain (see link below in section 'related metadata'). In order to ensure the consistency of the productivity of indicators, the primary source of information for employment growth and activity branches is National Accounts data (domestic concept), while the LFS data (national concept) are used for the gender and social breakdowns.
    • January 2016
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 22 January, 2016
      Select Dataset
      The indicators 'employment growth and activity branches', both quarterly and annual data, are calculated with special methods different that justify the present page. They are published in the section 'LFS main indicators', which is a collection of the main statistics on the labour market. Employment growth and activity branches combines the two main data sources for employment levels, which are EU-LFS and National Accounts. They not completely coherent, for details please refer to the ESMS page on 'Employment and unemployment (LFS)', section 17.1 Coherence - cross domain (see link below in section 'related metadata'). In order to ensure the consistency of the productivity of indicators, the primary source of information for employment growth and activity branches is National Accounts data (domestic concept), while the LFS data (national concept) are used for the gender and social breakdowns.
    • October 2018
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 03 November, 2018
      Select Dataset
      The 'LFS main indicators' section presents a selection of the main statistics on the labour market. They encompass indicators of activity employment and unemployment. Those indicators are based on the results of the European Labour Force Survey (EU-LFS), in few cases integrated with data sources like national accounts employment or registered unemployment. As a result of the application of adjustments, corrections and reconciliation of EU Labour Force Survey (EU-LFS), 'LFS main indicators' is the most complete and reliable collection of employment and unemployment data available in the sub-domain ' Employment and unemployment'. The EU-LFS data used for 'LFS main indicators' are, where necessary, adjusted and enriched in various ways, in accordance with the specificities of an indicator.  The most common adjustments cover: - correction of the main breaks in the LFS series - estimation of the missing values, (i.e. in case of missing quarters, annual results and EU aggregates are estimated using adjusted quarterly national labour force survey data or interpolations of the EU Labour Force Survey data with reference to the available quarter(s)) - reconciliations of the LFS data with other sources, mainly National Accounts (for Employment growth and activity branches) and national statistics on monthly unemployment (for Harmonised unemployment series). - for a number of indicators (employment, activity, unemployment, supplementary indicators) seasonally adjusted data are available Those adjustments may produce some differences between data published under 'LFS main indicators' and 'LFS series - Detailed survey results', particularly for back data. For the most recent years these two series converge, due to the implementation of a continuous quarterly survey and the improved quality of the data. This page focuses on the particularities of 'LFS main indicators' in general. There are special pages for indicators 'employment growth', 'population in jobless households', 'average exit age of labour market' and 'education indicators: life-long learning, early school leavers and youth education attainment level. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • April 2016
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 23 April, 2016
      Select Dataset
      The Questionnaire on Air Transport Statistics is aimed to collect aggregated annual data on the air transport sector for the following domains: I. Infrastructure (covering commercial airports only) (status at 31/12) II. Transport equipment (covering commercial aircrafts only) (status at 31/12) III. Enterprises, economic performance and employment (status at 31/12) IV. Accidents (annual data) - as from 2015 data on accidents are no longer collected by the questionnaire but are obtained from European Aviation Safety Agency (EASA) and disseminated under Air Transport Safety (tran_sf_avia) part of Eurobase Data are collected and disseminated at country level or at airport level for major European airports. The questionnaire is not supported by any legal acts and it is based on a gentlemen's agreement with the participating countries (Member States, Candidate Countries and EFTA countries). It is usually prefilled by Eurostat using its own sources as well as other ones (e.g. Airclaims or EASA) and sent to the countries for completion and validation. The completeness varies from country to country. Please note that information concerning data collected in the frame of the Air Transport Statistics Regulation can be found in the metadata documentation provided for this domain (Air Transport Measurement). The section on "Infrastructure" contains three tables: Number of main airports (with more than 150 000 passenger movements per year) and other airports with more than 15,000 passenger movements per year) at country levelAirport infrastructures by type at airport levelAirport connections to other modes of transport at airport level. The section on "Transport Equipment" contains two tables: Commercial aircraft fleet by type of aircraft at country levelCommercial aircraft fleet by age of aircraft at country level The section on "Enterprises economic performance and employment" contains three tables: Number of aviation and airport enterprises at country levelEmployment in aviation and airport enterprises by gender at country levelEmployment in main airports by gender at airport level The section on "Accidents" (which contained two tables Number of injury accidents at country level and Number of fatalities in injury accidents at country level) has been removed from dissemination (in September 2015) and replaced by Air Transport Safety (tran_sf_avia) tables: Air accident victims in commercial air transport, by country of occurrence and country of registry of aircraft (EASA data) (tran_sf_aviaca);Air accident victims in aerial works, by country of occurrence and country of registry of aircraft (EASA data) (tran_sf_aviaaw);Air accident victims in general aviation, by country of occurrence and country of registry of aircraft – maximum take-off mass above 2250 kg (EASA data) (tran_sf_aviagah);Air accident victims in general aviation by country of occurrence and country of registry of aircraft – maximum take-off mass under 2250 kg (EASA data) (tran_sf_aviagal). More information on air accident victims under the following link.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 March, 2019
      Select Dataset
      The indicator shows the percentage distribution of persons in employment aged 20-64 by job duration, i.e. for how many months they have been in their current job. Persons in employment are those who, during the reference week, performed work, even for just one hour a week, for pay, profit or family gain or who were not at work but had a job or business from which they were temporarily absent because of something like illness, holiday, industrial dispute or education and training. The indicator is based on the EU Labour Force Survey.
    • February 2018
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 17 February, 2018
      Select Dataset
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 March, 2019
      Select Dataset
      'Statistics on high-tech industry and knowledge-intensive services' (sometimes referred to as simply 'high-tech statistics') comprise economic, employment and science, technology and innovation (STI) data describing manufacturing and services industries or products traded broken down by technological intensity. The domain uses various other domains and sources of  Eurostat's official statistics (CIS, COMEXT, HRST, LFS, PATENT, R&D and SBS) and its coverage is therefore dependent on these other primary sources. Two main approaches are used in the domain to identify technology-intensity: the sectoral approach and the product approach. A third approach is used for data on high-tech and biotechnology patents aggregated on the basis of the International Patent Classification (IPC) 8th edition (see summary table in Annex 1 for which approach is used by each type of data). The sectoral approach: The sectoral approach is an aggregation of the manufacturing industries according to technological intensity (R&D expenditure/value added) and based on the Statistical classification of economic activities in the European Community (NACE)  at 2-digit level. The level of R&D intensity served as a criterion of classification of economic sectors into high-technology, medium high-technology, medium low-technology and low-technology industries. Services are mainly aggregated into knowledge-intensive services (KIS) and less knowledge-intensive services (LKIS) based on the share of tertiary educated persons at NACE 2-digit level. The sectoral approach is used for all indicators except data on high-tech trade and patents. Note that due to the revision of the NACE from NACE Rev. 1.1 to NACE Rev. 2 the definition of high-technology industries and knowledge-intensive services has changed in 2008. For high-tech statistics it means that two different definitions (one according NACE Rev. 1.1 and one according NACE Rev. 2) are used in parallel and the data according to both NACE versions are presented in separated tables depending on the data availability. For example as the LFS provides the results both by NACE Rev. 1.1 and NACE Rev. 2, all the table using this source have been duplicated to present the results by NACE Rev. 2 from 2008. For more details, see both definitions of high-tech sectors in Annex 2 and 3. Within the sectoral approach, a second classification was created , named Knowledge Intensive Activities KIA) and based on the share of tertiary educated people in each sectors of industries and services according to NACE at 2-digit level and for all EU28 Member States. A threshold was applied to judge sectors as knowledge intensive. In contrast to first sectoral approach mixing two methodologies, one for manufacturing industries and one for services, the KIA classification is based on one methodology for all the sectors of industries and services covering even public sector activities. The aggregations in use are Total Knowledge Intensive Activities (KIA) and Knowledge Intensive Activities in Business Industries (KIABI). Both classifications are made according to NACE Rev. 1.1 and NACE Rev. 2 at 2- digit level. Note that due to revision of the NACE Rev.1.1 to NACE Rev. 2 the list of Knowledge Intensive Activities has changed as well, the two definitions are used in parallel and the data are shown in two separate tables. NACE Rev.2 collection includes data starting from 2008 reference year. For more details please see the definitions in Annex 7 and 8. The product approach: The product approach was created to complement the sectoral approach and it is used for data on high-tech trade. The product list is based on the calculations of R&D intensity by groups of products (R&D expenditure/total sales). The groups classified as high-technology products are aggregated on the basis of the Standard International Trade Classification (SITC). The initial definition was built based on SITC Rev.3 and served to compile the high-tech product aggregates until 2007. With the implementation in 2007 of the new version of SITC Rev.4, the definition of high-tech groups was revised and adapted according to new classification. Starting from 2007 the Eurostat presents the trade data for high-tech groups aggregated based on the SITC Rev.4. . For more details, see definition of high-tech products in Annex 4 and 5. High-tech patents: High-tech patentsare defined according to another approach. The groups classified as high-tech patents are aggregated on the basis of the International Patent Classification (IPC 8th edition). Biotechnology patents are also aggregated on the basis of the IPC 8th edition. For more details, see the aggregation list of high-tech and biotechnology patents in Annex 6. The high-tech domain also comprises the sub-domain Venture Capital Investments: data are provided by INVEST Europe (formerly named the European Private Equity and Venture Capital Association EVCA). More details are available in the Eurostat metadata under Venture capital investments. Please note that for paragraphs where no metadata for regional data has been specified, the regional metadata is identical to the metadata provided for the national data.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 March, 2019
      Select Dataset
      The data shows the employment in high- and medium-high technology manufacturing sectors (code C_HTC_MH) and in knowledge-intensive service sectors (code KIS) as a share of total employment. Data source is the European Labour force survey (LFS). The definition of high- and medium-high technology manufacturing sectors and of knowledge-intensive services is based on a selection of relevant items of NACE Rev. 2 on 2-digit level and is oriented on the ratio of highly qualified working in these areas.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 22 March, 2019
      Select Dataset
      The data shows the employment in high-tech sectors (code HTC) as a percentage of total employment. The data are aggregated according to the sectoral approach at NACE Rev.2 on 2-digit level and is oriented on the ratio of highly qualified working in these areas.
    • March 2015
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 28 November, 2015
      Select Dataset
      The data in this dataset comes from the Common Questionnaire for Transport Statistics, developed and surveyed in co-operation between the United Nations Economic Commission for Europe (UNECE), the International Transport Forum (ITF) and Eurostat. The Common Questionnaire is not supported by a legal act, but is based on a gentlemen's agreement with the participating countries; the completeness varies from country to country. Eurostat’s datasets based on the Common Questionnaire cover annual data for the EU Member States, EFTA states and Candidate countries to the EU. Data for other participating countries are available through the ITF and the UNECE. In total, comparable transport data collected through the Common Questionnaire is available for close to 60 countries worldwide. The Common Questionnaire collects aggregated annual data on: Railway transportRoad transportInland waterways transportOil pipelines transportGas pipelines transport For each mode of transport, the Common Questionnaire cover some or all of the following sub-modules (the number of questions/variables within each sub-module varies between the different modes of transport): Infrastructure (All modes)Transport equipment (RAIL, ROAD and INLAND WATERWAYS)Enterprises, economic performance and employment (All modes)Traffic (RAIL, ROAD and INLAND WATERWAYS)Transport measurement (All modes) Accidents (ROAD only) The Common Questionnaire is completed by the competent national authorities. The responsibility for completing specific modules (e.g. Transport by Rail) or part of modules (e.g. Road Infrastructure) may be delegated to other national authorities in charge of specific fields.
    • March 2015
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 28 November, 2015
      Select Dataset
      The data in this dataset comes from the Common Questionnaire for Transport Statistics, developed and surveyed in co-operation between the United Nations Economic Commission for Europe (UNECE), the International Transport Forum (ITF) and Eurostat. The Common Questionnaire is not supported by a legal act, but is based on a gentlemen's agreement with the participating countries; the completeness varies from country to country. Eurostat’s datasets based on the Common Questionnaire cover annual data for the EU Member States, EFTA states and Candidate countries to the EU. Data for other participating countries are available through the ITF and the UNECE. In total, comparable transport data collected through the Common Questionnaire is available for close to 60 countries worldwide. The Common Questionnaire collects aggregated annual data on: Railway transportRoad transportInland waterways transportOil pipelines transportGas pipelines transport For each mode of transport, the Common Questionnaire cover some or all of the following sub-modules (the number of questions/variables within each sub-module varies between the different modes of transport): Infrastructure (All modes)Transport equipment (RAIL, ROAD and INLAND WATERWAYS)Enterprises, economic performance and employment (All modes)Traffic (RAIL, ROAD and INLAND WATERWAYS)Transport measurement (All modes) Accidents (ROAD only) The Common Questionnaire is completed by the competent national authorities. The responsibility for completing specific modules (e.g. Transport by Rail) or part of modules (e.g. Road Infrastructure) may be delegated to other national authorities in charge of specific fields.
    • July 2018
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 23 August, 2018
      Select Dataset
      The Questionnaire on Air Transport Statistics is aimed to collect aggregated annual data on the air transport sector for the following domains: I. Infrastructure (covering commercial airports only) (status at 31/12) II. Transport equipment (covering commercial aircrafts only) (status at 31/12) III. Enterprises, economic performance and employment (status at 31/12) IV. Accidents (annual data) - as from 2015 data on accidents are no longer collected by the questionnaire but are obtained from European Aviation Safety Agency (EASA) and disseminated under Air Transport Safety (tran_sf_avia) part of Eurobase Data are collected and disseminated at country level or at airport level for major European airports. The questionnaire is not supported by any legal acts and it is based on a gentlemen's agreement with the participating countries (Member States, Iceland, Norway, Switzerland, Turkey, FYROM and Montenegro). It is usually prefilled by Eurostat using its own sources as well as other ones (e.g. Airclaims or EASA) and sent to the countries for completion and validation. The completeness varies from country to country. Please note that information concerning data collected in the frame of the Air Transport Statistics Regulation can be found in the metadata documentation provided for this domain (Air Transport Measurement). The section on "Infrastructure" contains three tables: Number of main airports (with more than 150 000 passenger units per year) and other airports (between 15 000 and 150 000 passenger units per year) at country levelAirport infrastructures by type at airport levelAirport connections to other modes of transport at airport level. The section on "Transport Equipment" contains two tables: Commercial aircraft fleet by type of aircraft at country levelCommercial aircraft fleet by age of aircraft at country level The section on "Enterprises economic performance and employment" contains three tables: Number of aviation and airport enterprises at country levelEmployment in aviation and airport enterprises by gender at country levelEmployment in main airports by gender at airport level The section on "Accidents" (which contained two tables Number of injury accidents at country level and Number of fatalities in injury accidents at country level) has been removed from dissemination (in September 2015) and replaced by Air Transport Safety (tran_sf_avia) tables: Air accident victims in commercial air transport, by country of occurrence and country of registry of aircraft (EASA data) (tran_sf_aviaca);Air accident victims in aerial works, by country of occurrence and country of registry of aircraft (EASA data) (tran_sf_aviaaw);Air accident victims in general aviation, by country of occurrence and country of registry of aircraft – maximum take-off mass above 2250 kg (EASA data) (tran_sf_aviagah);Air accident victims in general aviation by country of occurrence and country of registry of aircraft – maximum take-off mass under 2250 kg (EASA data) (tran_sf_aviagal). More information on air accident victims under the following link.
    • March 2015
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 28 November, 2015
      Select Dataset
      The data in this dataset comes from the Common Questionnaire for Transport Statistics, developed and surveyed in co-operation between the United Nations Economic Commission for Europe (UNECE), the International Transport Forum (ITF) and Eurostat. The Common Questionnaire is not supported by a legal act, but is based on a gentlemen's agreement with the participating countries; the completeness varies from country to country. Eurostat’s datasets based on the Common Questionnaire cover annual data for the EU Member States, EFTA states and Candidate countries to the EU. Data for other participating countries are available through the ITF and the UNECE. In total, comparable transport data collected through the Common Questionnaire is available for close to 60 countries worldwide. The Common Questionnaire collects aggregated annual data on: Railway transportRoad transportInland waterways transportOil pipelines transportGas pipelines transport For each mode of transport, the Common Questionnaire cover some or all of the following sub-modules (the number of questions/variables within each sub-module varies between the different modes of transport): Infrastructure (All modes)Transport equipment (RAIL, ROAD and INLAND WATERWAYS)Enterprises, economic performance and employment (All modes)Traffic (RAIL, ROAD and INLAND WATERWAYS)Transport measurement (All modes) Accidents (ROAD only) The Common Questionnaire is completed by the competent national authorities. The responsibility for completing specific modules (e.g. Transport by Rail) or part of modules (e.g. Road Infrastructure) may be delegated to other national authorities in charge of specific fields.
    • June 2014
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 22 November, 2015
      Select Dataset
      The data in this dataset comes from the Common Questionnaire for Transport Statistics, developed and surveyed in co-operation between the United Nations Economic Commission for Europe (UNECE), the International Transport Forum (ITF) and Eurostat. The Common Questionnaire is not supported by a legal act, but is based on a gentlemen's agreement with the participating countries; the completeness varies from country to country. Eurostat’s datasets based on the Common Questionnaire cover annual data for the EU Member States, EFTA states and Candidate countries to the EU. Data for other participating countries are available through the ITFand the UNECE. In total, comparable transport data collected through the Common Questionnaire is available for close to 60 countries worldwide. The Common Questionnaire collects aggregated annual data on:Railway transportRoad transportInland waterways transportOil pipelines transportGas pipelines transport For each mode of transport, the Common Questionnaire cover some or all of the following sub-modules (the number of questions/variables within each sub-module varies between the different modes of transport):Infrastructure (All modes)Transport equipment (RAIL, ROAD and INLAND WATERWAYS)Enterprises, economic performance and employment (All modes)Traffic (RAIL, ROAD and INLAND WATERWAYS)Transport measurement (All modes) Accidents (ROAD only) The Common Questionnaire is completed by the competent national authorities. The responsibility for completing specific modules (e.g. Transport by Rail) or part of modules (e.g. Road Infrastructure) may be delegated to other national authorities in charge of specific fields.
    • June 2014
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 23 November, 2015
      Select Dataset
      The data in this dataset comes from the Common Questionnaire for Transport Statistics, developed and surveyed in co-operation between the United Nations Economic Commission for Europe (UNECE), the International Transport Forum (ITF) and Eurostat. The Common Questionnaire is not supported by a legal act, but is based on a gentlemen's agreement with the participating countries; the completeness varies from country to country. Eurostat’s datasets based on the Common Questionnaire cover annual data for the EU Member States, EFTA states and Candidate countries to the EU. Data for other participating countries are available through the ITF and the UNECE. In total, comparable transport data collected through the Common Questionnaire is available for close to 60 countries worldwide. The Common Questionnaire collects aggregated annual data on:Railway transportRoad transportInland waterways transportOil pipelines transportGas pipelines transport For each mode of transport, the Common Questionnaire cover some or all of the following sub-modules (the number of questions/variables within each sub-module varies between the different modes of transport):Infrastructure (All modes)Transport equipment (RAIL, ROAD and INLAND WATERWAYS)Enterprises, economic performance and employment (All modes)Traffic (RAIL, ROAD and INLAND WATERWAYS)Transport measurement (All modes) Accidents (ROAD only) The Common Questionnaire is completed by the competent national authorities. The responsibility for completing specific modules (e.g. Transport by Rail) or part of modules (e.g. Road Infrastructure) may be delegated to other national authorities in charge of specific fields.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 19 March, 2019
      Select Dataset
      'Statistics on high-tech industry and knowledge-intensive services' (sometimes referred to as simply 'high-tech statistics') comprise economic, employment and science, technology and innovation (STI) data describing manufacturing and services industries or products traded broken down by technological intensity. The domain uses various other domains and sources of  Eurostat's official statistics (CIS, COMEXT, HRST, LFS, PATENT, R&D and SBS) and its coverage is therefore dependent on these other primary sources. Two main approaches are used in the domain to identify technology-intensity: the sectoral approach and the product approach. A third approach is used for data on high-tech and biotechnology patents aggregated on the basis of the International Patent Classification (IPC) 8th edition (see summary table in Annex 1 for which approach is used by each type of data). The sectoral approach: The sectoral approach is an aggregation of the manufacturing industries according to technological intensity (R&D expenditure/value added) and based on the Statistical classification of economic activities in the European Community (NACE)  at 2-digit level. The level of R&D intensity served as a criterion of classification of economic sectors into high-technology, medium high-technology, medium low-technology and low-technology industries. Services are mainly aggregated into knowledge-intensive services (KIS) and less knowledge-intensive services (LKIS) based on the share of tertiary educated persons at NACE 2-digit level. The sectoral approach is used for all indicators except data on high-tech trade and patents. Note that due to the revision of the NACE from NACE Rev. 1.1 to NACE Rev. 2 the definition of high-technology industries and knowledge-intensive services has changed in 2008. For high-tech statistics it means that two different definitions (one according NACE Rev. 1.1 and one according NACE Rev. 2) are used in parallel and the data according to both NACE versions are presented in separated tables depending on the data availability. For example as the LFS provides the results both by NACE Rev. 1.1 and NACE Rev. 2, all the table using this source have been duplicated to present the results by NACE Rev. 2 from 2008. For more details, see both definitions of high-tech sectors under Annexes section. Within the sectoral approach, a second classification was created , named Knowledge Intensive Activities KIA) and based on the share of tertiary educated people in each sectors of industries and services according to NACE at 2-digit level and for all EU28 Member States. A threshold was applied to judge sectors as knowledge intensive. In contrast to first sectoral approach mixing two methodologies, one for manufacturing industries and one for services, the KIA classification is based on one methodology for all the sectors of industries and services covering even public sector activities. The aggregations in use are Total Knowledge Intensive Activities (KIA) and Knowledge Intensive Activities in Business Industries (KIABI). Both classifications are made according to NACE Rev. 1.1 and NACE Rev. 2 at 2- digit level. Note that due to revision of the NACE Rev.1.1 to NACE Rev. 2 the list of Knowledge Intensive Activities has changed as well, the two definitions are used in parallel and the data are shown in two separate tables. NACE Rev.2 collection includes data starting from 2008 reference year. For more details please see the definitions under Annexes section. The product approach: The product approach was created to complement the sectoral approach and it is used for data on high-tech trade. The product list is based on the calculations of R&D intensity by groups of products (R&D expenditure/total sales). The groups classified as high-technology products are aggregated on the basis of the Standard International Trade Classification (SITC). The initial definition was built based on SITC Rev.3 and served to compile the high-tech product aggregates until 2007. With the implementation in 2007 of the new version of SITC Rev.4, the definition of high-tech groups was revised and adapted according to new classification. Starting from 2007 the Eurostat presents the trade data for high-tech groups aggregated based on the SITC Rev.4. . For more details, see definition of high-tech products under Annexes section. High-tech patents: High-tech patents are defined according to another approach. The groups classified as high-tech patents are aggregated on the basis of the International Patent Classification (IPC 8th edition). Biotechnology patents are also aggregated on the basis of the IPC 8th edition. For more details, see the aggregation list of high-tech and biotechnology patents under Annexes section. The high-tech domain also comprises the sub-domain Venture Capital Investments: data are provided by INVEST Europe (formerly named the European Private Equity and Venture Capital Association EVCA). More details are available in the Eurostat metadata under Venture capital investments. Please note that for paragraphs where no metadata for regional data has been specified, the regional metadata is identical to the metadata provided for the national data.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 19 March, 2019
      Select Dataset
      'Statistics on high-tech industry and knowledge-intensive services' (sometimes referred to as simply 'high-tech statistics') comprise economic, employment and science, technology and innovation (STI) data describing manufacturing and services industries or products traded broken down by technological intensity. The domain uses various other domains and sources of  Eurostat's official statistics (CIS, COMEXT, HRST, LFS, PATENT, R&D and SBS) and its coverage is therefore dependent on these other primary sources. Two main approaches are used in the domain to identify technology-intensity: the sectoral approach and the product approach. A third approach is used for data on high-tech and biotechnology patents aggregated on the basis of the International Patent Classification (IPC) 8th edition (see summary table in Annex 1 for which approach is used by each type of data). The sectoral approach: The sectoral approach is an aggregation of the manufacturing industries according to technological intensity (R&D expenditure/value added) and based on the Statistical classification of economic activities in the European Community (NACE)  at 2-digit level. The level of R&D intensity served as a criterion of classification of economic sectors into high-technology, medium high-technology, medium low-technology and low-technology industries. Services are mainly aggregated into knowledge-intensive services (KIS) and less knowledge-intensive services (LKIS) based on the share of tertiary educated persons at NACE 2-digit level. The sectoral approach is used for all indicators except data on high-tech trade and patents. Note that due to the revision of the NACE from NACE Rev. 1.1 to NACE Rev. 2 the definition of high-technology industries and knowledge-intensive services has changed in 2008. For high-tech statistics it means that two different definitions (one according NACE Rev. 1.1 and one according NACE Rev. 2) are used in parallel and the data according to both NACE versions are presented in separated tables depending on the data availability. For example as the LFS provides the results both by NACE Rev. 1.1 and NACE Rev. 2, all the table using this source have been duplicated to present the results by NACE Rev. 2 from 2008. For more details, see both definitions of high-tech sectors under Annexes section. Within the sectoral approach, a second classification was created , named Knowledge Intensive Activities KIA) and based on the share of tertiary educated people in each sectors of industries and services according to NACE at 2-digit level and for all EU28 Member States. A threshold was applied to judge sectors as knowledge intensive. In contrast to first sectoral approach mixing two methodologies, one for manufacturing industries and one for services, the KIA classification is based on one methodology for all the sectors of industries and services covering even public sector activities. The aggregations in use are Total Knowledge Intensive Activities (KIA) and Knowledge Intensive Activities in Business Industries (KIABI). Both classifications are made according to NACE Rev. 1.1 and NACE Rev. 2 at 2- digit level. Note that due to revision of the NACE Rev.1.1 to NACE Rev. 2 the list of Knowledge Intensive Activities has changed as well, the two definitions are used in parallel and the data are shown in two separate tables. NACE Rev.2 collection includes data starting from 2008 reference year. For more details please see the definitions under Annexes section. The product approach: The product approach was created to complement the sectoral approach and it is used for data on high-tech trade. The product list is based on the calculations of R&D intensity by groups of products (R&D expenditure/total sales). The groups classified as high-technology products are aggregated on the basis of the Standard International Trade Classification (SITC). The initial definition was built based on SITC Rev.3 and served to compile the high-tech product aggregates until 2007. With the implementation in 2007 of the new version of SITC Rev.4, the definition of high-tech groups was revised and adapted according to new classification. Starting from 2007 the Eurostat presents the trade data for high-tech groups aggregated based on the SITC Rev.4. . For more details, see definition of high-tech products under Annexes section. High-tech patents: High-tech patents are defined according to another approach. The groups classified as high-tech patents are aggregated on the basis of the International Patent Classification (IPC 8th edition). Biotechnology patents are also aggregated on the basis of the IPC 8th edition. For more details, see the aggregation list of high-tech and biotechnology patents under Annexes section. The high-tech domain also comprises the sub-domain Venture Capital Investments: data are provided by INVEST Europe (formerly named the European Private Equity and Venture Capital Association EVCA). More details are available in the Eurostat metadata under Venture capital investments. Please note that for paragraphs where no metadata for regional data has been specified, the regional metadata is identical to the metadata provided for the national data.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 19 March, 2019
      Select Dataset
      'Statistics on high-tech industry and knowledge-intensive services' (sometimes referred to as simply 'high-tech statistics') comprise economic, employment and science, technology and innovation (STI) data describing manufacturing and services industries or products traded broken down by technological intensity. The domain uses various other domains and sources of  Eurostat's official statistics (CIS, COMEXT, HRST, LFS, PATENT, R&D and SBS) and its coverage is therefore dependent on these other primary sources. Two main approaches are used in the domain to identify technology-intensity: the sectoral approach and the product approach. A third approach is used for data on high-tech and biotechnology patents aggregated on the basis of the International Patent Classification (IPC) 8th edition (see summary table in Annex 1 for which approach is used by each type of data). The sectoral approach: The sectoral approach is an aggregation of the manufacturing industries according to technological intensity (R&D expenditure/value added) and based on the Statistical classification of economic activities in the European Community (NACE)  at 2-digit level. The level of R&D intensity served as a criterion of classification of economic sectors into high-technology, medium high-technology, medium low-technology and low-technology industries. Services are mainly aggregated into knowledge-intensive services (KIS) and less knowledge-intensive services (LKIS) based on the share of tertiary educated persons at NACE 2-digit level. The sectoral approach is used for all indicators except data on high-tech trade and patents. Note that due to the revision of the NACE from NACE Rev. 1.1 to NACE Rev. 2 the definition of high-technology industries and knowledge-intensive services has changed in 2008. For high-tech statistics it means that two different definitions (one according NACE Rev. 1.1 and one according NACE Rev. 2) are used in parallel and the data according to both NACE versions are presented in separated tables depending on the data availability. For example as the LFS provides the results both by NACE Rev. 1.1 and NACE Rev. 2, all the table using this source have been duplicated to present the results by NACE Rev. 2 from 2008. For more details, see both definitions of high-tech sectors under Annexes section. Within the sectoral approach, a second classification was created , named Knowledge Intensive Activities KIA) and based on the share of tertiary educated people in each sectors of industries and services according to NACE at 2-digit level and for all EU28 Member States. A threshold was applied to judge sectors as knowledge intensive. In contrast to first sectoral approach mixing two methodologies, one for manufacturing industries and one for services, the KIA classification is based on one methodology for all the sectors of industries and services covering even public sector activities. The aggregations in use are Total Knowledge Intensive Activities (KIA) and Knowledge Intensive Activities in Business Industries (KIABI). Both classifications are made according to NACE Rev. 1.1 and NACE Rev. 2 at 2- digit level. Note that due to revision of the NACE Rev.1.1 to NACE Rev. 2 the list of Knowledge Intensive Activities has changed as well, the two definitions are used in parallel and the data are shown in two separate tables. NACE Rev.2 collection includes data starting from 2008 reference year. For more details please see the definitions under Annexes section. The product approach: The product approach was created to complement the sectoral approach and it is used for data on high-tech trade. The product list is based on the calculations of R&D intensity by groups of products (R&D expenditure/total sales). The groups classified as high-technology products are aggregated on the basis of the Standard International Trade Classification (SITC). The initial definition was built based on SITC Rev.3 and served to compile the high-tech product aggregates until 2007. With the implementation in 2007 of the new version of SITC Rev.4, the definition of high-tech groups was revised and adapted according to new classification. Starting from 2007 the Eurostat presents the trade data for high-tech groups aggregated based on the SITC Rev.4. . For more details, see definition of high-tech products under Annexes section. High-tech patents: High-tech patentsare defined according to another approach. The groups classified as high-tech patents are aggregated on the basis of the International Patent Classification (IPC 8th edition). Biotechnology patents are also aggregated on the basis of the IPC 8th edition. For more details, see the aggregation list of high-tech and biotechnology patents under Annexes section. The high-tech domain also comprises the sub-domain Venture Capital Investments: data are provided by INVEST Europe (formerly named the European Private Equity and Venture Capital Association EVCA). More details are available in the Eurostat metadata under Venture capital investments. Please note that for paragraphs where no metadata for regional data has been specified, the regional metadata is identical to the metadata provided for the national data.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 13 April, 2019
      Select Dataset
      'Statistics on high-tech industry and knowledge-intensive services' (sometimes referred to as simply 'high-tech statistics') comprise economic, employment and science, technology and innovation (STI) data describing manufacturing and services industries or products traded broken down by technological intensity. The domain uses various other domains and sources of  Eurostat's official statistics (CIS, COMEXT, HRST, LFS, PATENT, R&D and SBS) and its coverage is therefore dependent on these other primary sources. Two main approaches are used in the domain to identify technology-intensity: the sectoral approach and the product approach. A third approach is used for data on high-tech and biotechnology patents aggregated on the basis of the International Patent Classification (IPC) 8th edition (see summary table in Annex 1 for which approach is used by each type of data). The sectoral approach: The sectoral approach is an aggregation of the manufacturing industries according to technological intensity (R&D expenditure/value added) and based on the Statistical classification of economic activities in the European Community (NACE) at 2-digit level. The level of R&D intensity served as a criterion of classification of economic sectors into high-technology, medium high-technology, medium low-technology and low-technology industries. Services are mainly aggregated into knowledge-intensive services (KIS) and less knowledge-intensive services (LKIS) based on the share of tertiary educated persons at NACE 2-digit level. The sectoral approach is used for all indicators except data on high-tech trade and patents. Note that due to the revision of the NACE from NACE Rev. 1.1 to NACE Rev. 2 the definition of high-technology industries and knowledge-intensive services has changed in 2008. For high-tech statistics it means that two different definitions (one according NACE Rev. 1.1 and one according NACE Rev. 2) are used in parallel and the data according to both NACE versions are presented in separated tables depending on the data availability. For example as the LFS provides the results both by NACE Rev. 1.1 and NACE Rev. 2, all the table using this source have been duplicated to present the results by NACE Rev. 2 from 2008. For more details, see both definitions of high-tech sectors in Annex 2 and 3. Within the sectoral approach, a second classification was created, named Knowledge Intensive Activities KIA) and based on the share of tertiary educated people in each sectors of industries and services according to NACE at 2-digit level and for all EU28 Member States. A threshold was applied to judge sectors as knowledge intensive. In contrast to first sectoral approach mixing two methodologies, one for manufacturing industries and one for services, the KIA classification is based on one methodology for all the sectors of industries and services covering even public sector activities. The aggregations in use are Total Knowledge Intensive Activities (KIA) and Knowledge Intensive Activities in Business Industries (KIABI). Both classifications are made according to NACE Rev. 1.1 and NACE Rev. 2 at 2- digit level. Note that due to revision of the NACE Rev.1.1 to NACE Rev. 2 the list of Knowledge Intensive Activities has changed as well, the two definitions are used in parallel and the data are shown in two separate tables. NACE Rev.2 collection includes data starting from 2008 reference year. For more details please see the definitions in Annex 7 and 8. The product approach: The product approach was created to complement the sectoral approach and it is used for data on high-tech trade. The product list is based on the calculations of R&D intensity by groups of products (R&D expenditure/total sales). The groups classified as high-technology products are aggregated on the basis of the Standard International Trade Classification (SITC). The initial definition was built based on SITC Rev.3 and served to compile the high-tech product aggregates until 2007. With the implementation in 2007 of the new version of SITC Rev.4, the definition of high-tech groups was revised and adapted according to new classification. Starting from 2007 the Eurostat presents the trade data for high-tech groups aggregated based on the SITC Rev.4. For more details, see definition of high-tech products in Annex 4 and 5. High-tech patents: High-tech patentsare defined according to another approach. The groups classified as high-tech patents are aggregated on the basis of the International Patent Classification (IPC 8th edition). Biotechnology patents are also aggregated on the basis of the IPC 8th edition. For more details, see the aggregation list of high-tech and biotechnology patents in Annex 6. The high-tech domain also comprises the sub-domain Venture Capital Investments: data are provided by INVEST Europe (formerly named the European Private Equity and Venture Capital Association EVCA). More details are available in the Eurostat metadata under Venture capital investments. Please note that for paragraphs where no metadata for regional data has been specified, the regional metadata is identical to the metadata provided for the national data.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 13 April, 2019
      Select Dataset
      'Statistics on high-tech industry and knowledge-intensive services' (sometimes referred to as simply 'high-tech statistics') comprise economic, employment and science, technology and innovation (STI) data describing manufacturing and services industries or products traded broken down by technological intensity. The domain uses various other domains and sources of  Eurostat's official statistics (CIS, COMEXT, HRST, LFS, PATENT, R&D and SBS) and its coverage is therefore dependent on these other primary sources. Two main approaches are used in the domain to identify technology-intensity: the sectoral approach and the product approach. A third approach is used for data on high-tech and biotechnology patents aggregated on the basis of the International Patent Classification (IPC) 8th edition (see summary table in Annex 1 for which approach is used by each type of data). The sectoral approach: The sectoral approach is an aggregation of the manufacturing industries according to technological intensity (R&D expenditure/value added) and based on the Statistical classification of economic activities in the European Community (NACE) at 2-digit level. The level of R&D intensity served as a criterion of classification of economic sectors into high-technology, medium high-technology, medium low-technology and low-technology industries. Services are mainly aggregated into knowledge-intensive services (KIS) and less knowledge-intensive services (LKIS) based on the share of tertiary educated persons at NACE 2-digit level. The sectoral approach is used for all indicators except data on high-tech trade and patents. Note that due to the revision of the NACE from NACE Rev. 1.1 to NACE Rev. 2 the definition of high-technology industries and knowledge-intensive services has changed in 2008. For high-tech statistics it means that two different definitions (one according NACE Rev. 1.1 and one according NACE Rev. 2) are used in parallel and the data according to both NACE versions are presented in separated tables depending on the data availability. For example as the LFS provides the results both by NACE Rev. 1.1 and NACE Rev. 2, all the table using this source have been duplicated to present the results by NACE Rev. 2 from 2008. For more details, see both definitions of high-tech sectors in Annex 2 and 3. Within the sectoral approach, a second classification was created, named Knowledge Intensive Activities KIA) and based on the share of tertiary educated people in each sectors of industries and services according to NACE at 2-digit level and for all EU28 Member States. A threshold was applied to judge sectors as knowledge intensive. In contrast to first sectoral approach mixing two methodologies, one for manufacturing industries and one for services, the KIA classification is based on one methodology for all the sectors of industries and services covering even public sector activities. The aggregations in use are Total Knowledge Intensive Activities (KIA) and Knowledge Intensive Activities in Business Industries (KIABI). Both classifications are made according to NACE Rev. 1.1 and NACE Rev. 2 at 2- digit level. Note that due to revision of the NACE Rev.1.1 to NACE Rev. 2 the list of Knowledge Intensive Activities has changed as well, the two definitions are used in parallel and the data are shown in two separate tables. NACE Rev.2 collection includes data starting from 2008 reference year. For more details please see the definitions in Annex 7 and 8. The product approach: The product approach was created to complement the sectoral approach and it is used for data on high-tech trade. The product list is based on the calculations of R&D intensity by groups of products (R&D expenditure/total sales). The groups classified as high-technology products are aggregated on the basis of the Standard International Trade Classification (SITC). The initial definition was built based on SITC Rev.3 and served to compile the high-tech product aggregates until 2007. With the implementation in 2007 of the new version of SITC Rev.4, the definition of high-tech groups was revised and adapted according to new classification. Starting from 2007 the Eurostat presents the trade data for high-tech groups aggregated based on the SITC Rev.4. For more details, see definition of high-tech products in Annex 4 and 5. High-tech patents: High-tech patentsare defined according to another approach. The groups classified as high-tech patents are aggregated on the basis of the International Patent Classification (IPC 8th edition). Biotechnology patents are also aggregated on the basis of the IPC 8th edition. For more details, see the aggregation list of high-tech and biotechnology patents in Annex 6. The high-tech domain also comprises the sub-domain Venture Capital Investments: data are provided by INVEST Europe (formerly named the European Private Equity and Venture Capital Association EVCA). More details are available in the Eurostat metadata under Venture capital investments. Please note that for paragraphs where no metadata for regional data has been specified, the regional metadata is identical to the metadata provided for the national data.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 20 February, 2019
      Select Dataset
      'Statistics on high-tech industry and knowledge-intensive services' (sometimes referred to as simply 'high-tech statistics') comprise economic, employment and science, technology and innovation (STI) data describing manufacturing and services industries or products traded broken down by technological intensity. The domain uses various other domains and sources of  Eurostat's official statistics (CIS, COMEXT, HRST, LFS, PATENT, R&D and SBS) and its coverage is therefore dependent on these other primary sources. Two main approaches are used in the domain to identify technology-intensity: the sectoral approach and the product approach. A third approach is used for data on high-tech and biotechnology patents aggregated on the basis of the International Patent Classification (IPC) 8th edition (see summary table in Annex 1 for which approach is used by each type of data). The sectoral approach: The sectoral approach is an aggregation of the manufacturing industries according to technological intensity (R&D expenditure/value added) and based on the Statistical classification of economic activities in the European Community (NACE) at 2-digit level. The level of R&D intensity served as a criterion of classification of economic sectors into high-technology, medium high-technology, medium low-technology and low-technology industries. Services are mainly aggregated into knowledge-intensive services (KIS) and less knowledge-intensive services (LKIS) based on the share of tertiary educated persons at NACE 2-digit level. The sectoral approach is used for all indicators except data on high-tech trade and patents. Note that due to the revision of the NACE from NACE Rev. 1.1 to NACE Rev. 2 the definition of high-technology industries and knowledge-intensive services has changed in 2008. For high-tech statistics it means that two different definitions (one according NACE Rev. 1.1 and one according NACE Rev. 2) are used in parallel and the data according to both NACE versions are presented in separated tables depending on the data availability. For example as the LFS provides the results both by NACE Rev. 1.1 and NACE Rev. 2, all the table using this source have been duplicated to present the results by NACE Rev. 2 from 2008. For more details, see both definitions of high-tech sectors in Annex 2 and 3. Within the sectoral approach, a second classification was created, named Knowledge Intensive Activities KIA) and based on the share of tertiary educated people in each sectors of industries and services according to NACE at 2-digit level and for all EU28 Member States. A threshold was applied to judge sectors as knowledge intensive. In contrast to first sectoral approach mixing two methodologies, one for manufacturing industries and one for services, the KIA classification is based on one methodology for all the sectors of industries and services covering even public sector activities. The aggregations in use are Total Knowledge Intensive Activities (KIA) and Knowledge Intensive Activities in Business Industries (KIABI). Both classifications are made according to NACE Rev. 1.1 and NACE Rev. 2 at 2- digit level. Note that due to revision of the NACE Rev.1.1 to NACE Rev. 2 the list of Knowledge Intensive Activities has changed as well, the two definitions are used in parallel and the data are shown in two separate tables. NACE Rev.2 collection includes data starting from 2008 reference year. For more details please see the definitions in Annex 7 and 8. The product approach: The product approach was created to complement the sectoral approach and it is used for data on high-tech trade. The product list is based on the calculations of R&D intensity by groups of products (R&D expenditure/total sales). The groups classified as high-technology products are aggregated on the basis of the Standard International Trade Classification (SITC). The initial definition was built based on SITC Rev.3 and served to compile the high-tech product aggregates until 2007. With the implementation in 2007 of the new version of SITC Rev.4, the definition of high-tech groups was revised and adapted according to new classification. Starting from 2007 the Eurostat presents the trade data for high-tech groups aggregated based on the SITC Rev.4. For more details, see definition of high-tech products in Annex 4 and 5. High-tech patents: High-tech patentsare defined according to another approach. The groups classified as high-tech patents are aggregated on the basis of the International Patent Classification (IPC 8th edition). Biotechnology patents are also aggregated on the basis of the IPC 8th edition. For more details, see the aggregation list of high-tech and biotechnology patents in Annex 6. The high-tech domain also comprises the sub-domain Venture Capital Investments: data are provided by INVEST Europe (formerly named the European Private Equity and Venture Capital Association EVCA). More details are available in the Eurostat metadata under Venture capital investments. Please note that for paragraphs where no metadata for regional data has been specified, the regional metadata is identical to the metadata provided for the national data.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 14 February, 2019
      Select Dataset
      'Statistics on high-tech industry and knowledge-intensive services' (sometimes referred to as simply 'high-tech statistics') comprise economic, employment and science, technology and innovation (STI) data describing manufacturing and services industries or products traded broken down by technological intensity. The domain uses various other domains and sources of  Eurostat's official statistics (CIS, COMEXT, HRST, LFS, PATENT, R&D and SBS) and its coverage is therefore dependent on these other primary sources. Two main approaches are used in the domain to identify technology-intensity: the sectoral approach and the product approach. A third approach is used for data on high-tech and biotechnology patents aggregated on the basis of the International Patent Classification (IPC) 8th edition (see summary table in Annex 1 for which approach is used by each type of data). The sectoral approach: The sectoral approach is an aggregation of the manufacturing industries according to technological intensity (R&D expenditure/value added) and based on the Statistical classification of economic activities in the European Community (NACE) at 2-digit level. The level of R&D intensity served as a criterion of classification of economic sectors into high-technology, medium high-technology, medium low-technology and low-technology industries. Services are mainly aggregated into knowledge-intensive services (KIS) and less knowledge-intensive services (LKIS) based on the share of tertiary educated persons at NACE 2-digit level. The sectoral approach is used for all indicators except data on high-tech trade and patents. Note that due to the revision of the NACE from NACE Rev. 1.1 to NACE Rev. 2 the definition of high-technology industries and knowledge-intensive services has changed in 2008. For high-tech statistics it means that two different definitions (one according NACE Rev. 1.1 and one according NACE Rev. 2) are used in parallel and the data according to both NACE versions are presented in separated tables depending on the data availability. For example as the LFS provides the results both by NACE Rev. 1.1 and NACE Rev. 2, all the table using this source have been duplicated to present the results by NACE Rev. 2 from 2008. For more details, see both definitions of high-tech sectors in Annex 2 and 3. Within the sectoral approach, a second classification was created, named Knowledge Intensive Activities KIA) and based on the share of tertiary educated people in each sectors of industries and services according to NACE at 2-digit level and for all EU28 Member States. A threshold was applied to judge sectors as knowledge intensive. In contrast to first sectoral approach mixing two methodologies, one for manufacturing industries and one for services, the KIA classification is based on one methodology for all the sectors of industries and services covering even public sector activities. The aggregations in use are Total Knowledge Intensive Activities (KIA) and Knowledge Intensive Activities in Business Industries (KIABI). Both classifications are made according to NACE Rev. 1.1 and NACE Rev. 2 at 2- digit level. Note that due to revision of the NACE Rev.1.1 to NACE Rev. 2 the list of Knowledge Intensive Activities has changed as well, the two definitions are used in parallel and the data are shown in two separate tables. NACE Rev.2 collection includes data starting from 2008 reference year. For more details please see the definitions in Annex 7 and 8. The product approach: The product approach was created to complement the sectoral approach and it is used for data on high-tech trade. The product list is based on the calculations of R&D intensity by groups of products (R&D expenditure/total sales). The groups classified as high-technology products are aggregated on the basis of the Standard International Trade Classification (SITC). The initial definition was built based on SITC Rev.3 and served to compile the high-tech product aggregates until 2007. With the implementation in 2007 of the new version of SITC Rev.4, the definition of high-tech groups was revised and adapted according to new classification. Starting from 2007 the Eurostat presents the trade data for high-tech groups aggregated based on the SITC Rev.4. For more details, see definition of high-tech products in Annex 4 and 5. High-tech patents: High-tech patentsare defined according to another approach. The groups classified as high-tech patents are aggregated on the basis of the International Patent Classification (IPC 8th edition). Biotechnology patents are also aggregated on the basis of the IPC 8th edition. For more details, see the aggregation list of high-tech and biotechnology patents in Annex 6. The high-tech domain also comprises the sub-domain Venture Capital Investments: data are provided by INVEST Europe (formerly named the European Private Equity and Venture Capital Association EVCA). More details are available in the Eurostat metadata under Venture capital investments. Please note that for paragraphs where no metadata for regional data has been specified, the regional metadata is identical to the metadata provided for the national data.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 March, 2019
      Select Dataset
      The section 'LFS series - detailed annual survey results' reports annual results from the EU-LFS. While LFS is a quarterly survey, it is also possible to produce annual results. There are several ways of doing it, see section '18.5 Data compilation' below for details. This data collection covers all main labour market characteristics, i.e. the total population, activity and activity rates, employment, employment rates, self employed, employees, temporary employment, full-time and part-time employment, population in employment having a second job, working time, total unemployment and inactivity. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metadata. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • April 2018
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 11 April, 2018
      Select Dataset
      % of age group 20-64 yearsThe indicator is calculated by dividing the number of employed people within the age group 20-64 years having attained a specific level of education by the total population of the same age group. The educational attainment level is coded according to the International Standard Classification of Education (ISCED). Data until 2013 are classified according to ISCED 1997 and data as from 2014 according to ISCED 2011.- Less than primary, primary and lower secondary education (ISCED levels 0-2) -Upper secondary and post-secondary non-tertiary education (ISCED levels 3 and 4) -Tertiary education (ISCED levels 5-8) (ISCED 1997: levels 5 and 6) The indicator is based on the EU Labour Force Survey (LFS), covering the population living in private households. Employment rate (total, females, males): The number of persons (females, males) aged 20-64 in employment as a share of the total population (females, males) of the same age group.
    • December 2016
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 20 December, 2016
      Select Dataset
      Employment rate (total, females, males): The number of persons (females, males) aged 20-64 in employment as a share of the total population (females, males) of the same age group.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 20 February, 2019
      Select Dataset
      The data collection 'LFS - specific topics, household statistics' covers a range of statistics on number, characteristics and typologies of households, based on the European Union Labour Force Survey (EU-LFS). The data collection also encompasses some labour market indicators broken down by household composition. Only annual data are available. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 20 February, 2019
      Select Dataset
      The data collection 'LFS - specific topics, household statistics' covers a range of statistics on number, characteristics and typologies of households, based on the European Union Labour Force Survey (EU-LFS). The data collection also encompasses some labour market indicators broken down by household composition. Only annual data are available. General information on the EU-LFS can be found in the ESMS page for 'Employment and unemployment (LFS)', see link in related metada. Detailed information on the main features, the legal basis, the methodology and the data as well as on the historical development of the EU-LFS is available on the EU-LFS (Statistics Explained) webpage.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 March, 2019
      Select Dataset
      The section 'Labour mobility' provides demographical and labour statistics on people either born in European Union (EU) and European Free Trade Association (EFTA) area or having the citizenship of an EU/EFTA country and residing elsewhere on the EU and EFTA territories except their country of birth/citizenship. This implies aggregating the estimates coming from Labour Force Survey samples (EU-LFS) of all EU/EFTA countries except that of origin or nationality to find all the persons of a certain nationality or country of origin that reside elsewhere where the EU rules regarding the free movement of people apply. More specifically, they can be identified only if effectively a changed of residence implying crossing a border has taken place, meaning they reside (or intend to do so) in another country for at least 12 months. Short term movements are therefore not taken into account.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 March, 2019
      Select Dataset
      The section 'Labour mobility' provides demographical and labour statistics on people either born in European Union (EU) and European Free Trade Association (EFTA) area or having the citizenship of an EU/EFTA country and residing elsewhere on the EU and EFTA territories except their country of birth/citizenship. This implies aggregating the estimates coming from Labour Force Survey samples (EU-LFS) of all EU/EFTA countries except that of origin or nationality to find all the persons of a certain nationality or country of origin that reside elsewhere where the EU rules regarding the free movement of people apply. More specifically, they can be identified only if effectively a changed of residence implying crossing a border has taken place, meaning they reside (or intend to do so) in another country for at least 12 months. Short term movements are therefore not taken into account.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 March, 2019
      Select Dataset
      The section 'Labour mobility' provides demographical and labour statistics on people either born in European Union (EU) and European Free Trade Association (EFTA) area or having the citizenship of an EU/EFTA country and residing elsewhere on the EU and EFTA territories except their country of birth/citizenship. This implies aggregating the estimates coming from Labour Force Survey samples (EU-LFS) of all EU/EFTA countries except that of origin or nationality to find all the persons of a certain nationality or country of origin that reside elsewhere where the EU rules regarding the free movement of people apply. More specifically, they can be identified only if effectively a changed of residence implying crossing a border has taken place, meaning they reside (or intend to do so) in another country for at least 12 months. Short term movements are therefore not taken into account.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 March, 2019
      Select Dataset
      The section 'Labour mobility' provides demographical and labour statistics on people either born in European Union (EU) and European Free Trade Association (EFTA) area or having the citizenship of an EU/EFTA country and residing elsewhere on the EU and EFTA territories except their country of birth/citizenship. This implies aggregating the estimates coming from Labour Force Survey samples (EU-LFS) of all EU/EFTA countries except that of origin or nationality to find all the persons of a certain nationality or country of origin that reside elsewhere where the EU rules regarding the free movement of people apply. More specifically, they can be identified only if effectively a changed of residence implying crossing a border has taken place, meaning they reside (or intend to do so) in another country for at least 12 months. Short term movements are therefore not taken into account.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 March, 2019
      Select Dataset
      The section 'Labour mobility' provides demographical and labour statistics on people either born in European Union (EU) and European Free Trade Association (EFTA) area or having the citizenship of an EU/EFTA country and residing elsewhere on the EU and EFTA territories except their country of birth/citizenship. This implies aggregating the estimates coming from Labour Force Survey samples (EU-LFS) of all EU/EFTA countries except that of origin or nationality to find all the persons of a certain nationality or country of origin that reside elsewhere where the EU rules regarding the free movement of people apply. More specifically, they can be identified only if effectively a changed of residence implying crossing a border has taken place, meaning they reside (or intend to do so) in another country for at least 12 months. Short term movements are therefore not taken into account.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 March, 2019
      Select Dataset
      The section 'Labour mobility' provides demographical and labour statistics on people either born in European Union (EU) and European Free Trade Association (EFTA) area or having the citizenship of an EU/EFTA country and residing elsewhere on the EU and EFTA territories except their country of birth/citizenship. This implies aggregating the estimates coming from Labour Force Survey samples (EU-LFS) of all EU/EFTA countries except that of origin or nationality to find all the persons of a certain nationality or country of origin that reside elsewhere where the EU rules regarding the free movement of people apply. More specifically, they can be identified only if effectively a changed of residence implying crossing a border has taken place, meaning they reside (or intend to do so) in another country for at least 12 months. Short term movements are therefore not taken into account.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 March, 2019
      Select Dataset
      The employment rate of low skilled persons is calculated by dividing the number of persons in employment with at most lower secondary education (i.e. ISCED 0-2) and aged 20-64 by the total population in the same age and skill group. The indicator is based on the EU Labour Force Survey.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 18 March, 2019
      Select Dataset
      The employment rate of non-EU nationals is calculated by dividing the number of citizens of countries outside the EU-28 in employment and aged 20-64 by the total number of citizens of countries outside the EU-28 in the same age group. The indicator is based on the EU Labour Force Survey.
    • April 2018
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 11 April, 2018
      Select Dataset
      The employment rate of older workers is calculated by dividing the number of persons in employment and aged 55 to 64 by the total population of the same age group. The indicator is based on the EU Labour Force Survey. The survey covers the entire population living in private households and excludes those in collective households such as boarding houses, halls of residence and hospitals. Employed population consists of those persons who during the reference week did any work for pay or profit for at least one hour, or were not working but had jobs from which they were temporarily absent.
    • February 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 11 February, 2019
      Select Dataset
      The employment rate of older workers is calculated by dividing the number of persons in employment and aged 55 to 64 by the total population of the same age group. The indicator is based on the EU Labour Force Survey.
    • July 2014
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 25 November, 2015
      Select Dataset
      In 2011, the European Union Labour Force Survey (EU-LFS) included an ad hoc module (AHM) on employment of disabled people. The module consisted of 11 variables dealing with:Health problems and difficulties in basic activities;Limitations in work caused by health problems/difficulties in basic activities;Special assistance needed or used by people with health problems/difficulties in basic activities;Limitation in work because of other reasons. On the basis of how the module was operationalised, the following two main definitions for disability were considered for presenting the results:Disabled persons = People having a basic activity difficulty (such as seeing, hearing, walking, communicating);Disabled persons = People having a work limitation caused by a longstanding health condition and/or a basic activity difficulty. 32 countries have implemented this module: the EU 28 Member States plus Turkey, Iceland, Norway and Switzerland. The Norwegian data are not disseminated because the AHM questionnaire in Norway only partly complies with the Commission Regulation (EU) No 317/2010 and consequently, the data are incomplete and partly comparable. Missing values, don't know and refusal answers are not considered in the calculations. It means the indicators have been worked out on the respondents and validated answers only.
    • March 2019
      Source: Eurostat
      Uploaded by: Knoema
      Accessed On: 22 March, 2019
      Select Dataset
      The source for the regional labour market information down to NUTS level 2 is the EU Labour Force Survey (EU-LFS). This is a quarterly household sample survey conducted in all Member States of the EU and in EFTA and Candidate countries.  The EU-LFS survey follows the definitions and recommendations of the International Labour Organisation (ILO). To achieve further harmonisation, the Member States also adhere to common principles when formulating questionnaires. The LFS' target population is made up of all persons in private households aged 15 and over. For more information see the EU Labour Force Survey (lfsi_esms, see paragraph 21.1.).  The EU-LFS is designed to give accurate quarterly information at national level as well as annual information at NUTS 2 regional level and the compilation of these figures is well specified in the regulation. Microdata including the NUTS 2 level codes are provided by all the participating countries with a good degree of geographical comparability, which allows the production and dissemination of a complete set of comparable indicators for this territorial level. At present the transmission of the regional labour market data at NUTS 3 level has no legal basis. However many countries transmit NUTS 3 figures to Eurostat on a voluntary basis, under the understanding that they are not for publication with such detail, but for aggregation in few categories per country, i.e., metropolitan regions and urban-rural typology. Most of the NUTS 3 data are based on the LFS while some countries transmit data based on registers, administrative data, small area estimation and other reliable sources.